BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26412205)

  • 1. Colloid Deposit Morphology and Clogging in Porous Media: Fundamental Insights Through Investigation of Deposit Fractal Dimension.
    Roth EJ; Gilbert B; Mays DC
    Environ Sci Technol; 2015 Oct; 49(20):12263-70. PubMed ID: 26412205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of colloidal phenomena during flow through refractive index matched porous media.
    Roth EJ; Mont-Eton ME; Gilbert B; Lei TC; Mays DC
    Rev Sci Instrum; 2015 Nov; 86(11):113103. PubMed ID: 26628117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Static light scattering resolves colloid structure in index-matched porous media.
    Mays DC; Cannon OT; Kanold AW; Harris KJ; Lei TC; Gilbert B
    J Colloid Interface Sci; 2011 Nov; 363(1):418-24. PubMed ID: 21839461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology of Shear-Induced Colloidal Aggregates in Porous Media: Consequences for Transport, Deposition, and Re-entrainment.
    Perez AJ; PatiƱo JE; Soos M; Morales VL
    Environ Sci Technol; 2020 May; 54(9):5813-5821. PubMed ID: 32182046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity.
    Torkzaban S; Bradford SA; Vanderzalm JL; Patterson BM; Harris B; Prommer H
    J Contam Hydrol; 2015 Oct; 181():161-71. PubMed ID: 26141344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic and chemical factors in clogging by montmorillonite in porous media.
    Mays DC; Hunt JR
    Environ Sci Technol; 2007 Aug; 41(16):5666-71. PubMed ID: 17874771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applicability of colloid filtration theory in size-distributed, reduced porosity, granular media in the absence of energy barriers.
    Pazmino EF; Ma H; Johnson WP
    Environ Sci Technol; 2011 Dec; 45(24):10401-7. PubMed ID: 22029252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamics of Fractal Aggregates with Radially Varying Permeability.
    Veerapaneni S; Wiesner MR
    J Colloid Interface Sci; 1996 Jan; 177(1):45-57. PubMed ID: 10479416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The permeability of synthetic fractal aggregates with realistic three-dimensional structure.
    Kim AS; Stolzenbach KD
    J Colloid Interface Sci; 2002 Sep; 253(2):315-28. PubMed ID: 16290864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virus-sized colloid transport in a single pore: model development and sensitivity analysis.
    Seetha N; Mohan Kumar MS; Majid Hassanizadeh S; Raoof A
    J Contam Hydrol; 2014 Aug; 164():163-80. PubMed ID: 24992707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.
    Torkzaban S; Kim HN; Simunek J; Bradford SA
    Environ Sci Technol; 2010 Mar; 44(5):1662-9. PubMed ID: 20136144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloid transport in porous media: impact of hyper-saline solutions.
    Magal E; Weisbrod N; Yechieli Y; Walker SL; Yakirevich A
    Water Res; 2011 May; 45(11):3521-32. PubMed ID: 21550095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permeability of collapsed cakes formed by deposition of fractal aggregates upon membrane filtration.
    Park PK; Lee CH; Lee S
    Environ Sci Technol; 2006 Apr; 40(8):2699-705. PubMed ID: 16683611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excess colloid retention in porous media as a function of colloid size, fluid velocity, and grain angularity.
    Tong M; Joainson WP
    Environ Sci Technol; 2006 Dec; 40(24):7725-31. PubMed ID: 17256519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Funneling of flow into grain-to-grain contacts drives colloid-colloid aggregation in the presence of an energy barrier.
    Tong M; ma H; Johnson WP
    Environ Sci Technol; 2008 Apr; 42(8):2826-32. PubMed ID: 18497130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore-scale observation of deposit within the gravel matrix of a vertical flow constructed wetland.
    Kim B; Forquet N
    Environ Technol; 2016 Dec; 37(24):3146-50. PubMed ID: 27163965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal aggregates of Pd nanoparticles supported by larch arabinogalactan.
    Gasilova ER; Matveeva GN; Aleksandrova GP; Sukhov BG; Trofimov BA
    J Phys Chem B; 2013 Feb; 117(7):2134-41. PubMed ID: 23360464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of sheared colloidal aggregation using Langevin dynamics simulation.
    Markutsya S; Fox RO; Subramaniam S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062312. PubMed ID: 25019781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking colloid transport in porous media using discrete flow fields and sensitivity of simulated colloid deposition to space discretization.
    Li Z; Zhang D; Li X
    Environ Sci Technol; 2010 Feb; 44(4):1274-80. PubMed ID: 20088544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.