These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26412648)

  • 1. Hydrodynamic Modeling and Its Application in AUC.
    Rocco M; Byron O
    Methods Enzymol; 2015; 562():81-108. PubMed ID: 26412648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computing translational diffusion and sedimentation coefficients: an evaluation of experimental data and programs.
    Rocco M; Byron O
    Eur Biophys J; 2015 Sep; 44(6):417-31. PubMed ID: 26066679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule.
    Brookes E; Demeler B; Rosano C; Rocco M
    Eur Biophys J; 2010 Feb; 39(3):423-35. PubMed ID: 19234696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developments in the US-SOMO bead modeling suite: new features in the direct residue-to-bead method, improved grid routines, and influence of accessible surface area screening.
    Brookes E; Demeler B; Rocco M
    Macromol Biosci; 2010 Jul; 10(7):746-53. PubMed ID: 20480513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic modeling: the solution conformation of macromolecules and their complexes.
    Byron O
    Methods Cell Biol; 2008; 84():327-73. PubMed ID: 17964937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global fit and structure optimization of flexible and rigid macromolecules and nanoparticles from analytical ultracentrifugation and other dilute solution properties.
    Ortega A; Amorós D; García de la Torre J
    Methods; 2011 May; 54(1):115-23. PubMed ID: 21163355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods and tools for the prediction of hydrodynamic coefficients and other solution properties of flexible macromolecules in solution. A tutorial minireview.
    García de la Torre J; Ortega A; Amorós D; Rodríguez Schmidt R; Hernández Cifre JG
    Macromol Biosci; 2010 Jul; 10(7):721-30. PubMed ID: 20461749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in macromolecular hydrodynamic modeling.
    Aragon SR
    Methods; 2011 May; 54(1):101-14. PubMed ID: 21073955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models.
    Ortega A; Amorós D; García de la Torre J
    Biophys J; 2011 Aug; 101(4):892-8. PubMed ID: 21843480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in the UltraScan SOlution MOdeller (US-SOMO) hydrodynamic and small-angle scattering data analysis and simulation suite.
    Brookes E; Rocco M
    Eur Biophys J; 2018 Oct; 47(7):855-864. PubMed ID: 29594411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic Properties of Biomacromolecules and Macromolecular Complexes: Concepts and Methods. A Tutorial Mini-review.
    García de la Torre J; Hernández Cifre JG
    J Mol Biol; 2020 Apr; 432(9):2930-2948. PubMed ID: 31877325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of modern approaches to the hydrodynamic characterisation of polydisperse macromolecular systems in biotechnology.
    Gillis RB; Rowe AJ; Adams GG; Harding SE
    Biotechnol Genet Eng Rev; 2014 Oct; 30(1-2):142-57. PubMed ID: 25686159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the hydration of proteins: prediction of structural and hydrodynamic parameters from X-ray diffraction and scattering data.
    Durchschlag H; Zipper P
    Eur Biophys J; 2003 Aug; 32(5):487-502. PubMed ID: 12715248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MULTIHYDRO and MONTEHYDRO: conformational search and Monte Carlo calculation of solution properties of rigid or flexible bead models.
    Garcia de la Torre J; Ortega A; Perez Sanchez HE; Hernandez Cifre JG
    Biophys Chem; 2005 Jul; 116(2):121-8. PubMed ID: 15950824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformation parameters of linear macromolecules from velocity sedimentation and other hydrodynamic methods.
    Pavlov GM; Perevyazko IY; Okatova OV; Schubert US
    Methods; 2011 May; 54(1):124-35. PubMed ID: 21320600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel size-independent modeling of the dilute solution conformation of the immunoglobulin IgG Fab' domain using SOLPRO and ELLIPS.
    Carrasco B; de la Torre JG; Byron O; King D; Walters C; Jones S; Harding SE
    Biophys J; 1999 Dec; 77(6):2902-10. PubMed ID: 10585914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical Ultracentrifugation (AUC): An Overview of the Application of Fluorescence and Absorbance AUC to the Study of Biological Macromolecules.
    Edwards GB; Muthurajan UM; Bowerman S; Luger K
    Curr Protoc Mol Biol; 2020 Dec; 133(1):e131. PubMed ID: 33351266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SOMO (SOlution MOdeler) differences between X-Ray- and NMR-derived bead models suggest a role for side chain flexibility in protein hydrodynamics.
    Rai N; Nöllmann M; Spotorno B; Tassara G; Byron O; Rocco M
    Structure; 2005 May; 13(5):723-34. PubMed ID: 15893663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of hydrodynamic bead models from high-resolution X-ray crystallographic or nuclear magnetic resonance data.
    Byron O
    Biophys J; 1997 Jan; 72(1):408-15. PubMed ID: 8994627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of a molecular shape for netrin-4 from hydrodynamic and small angle X-ray scattering measurements.
    Patel TR; Reuten R; Xiong S; Meier M; Winzor DJ; Koch M; Stetefeld J
    Matrix Biol; 2012 Mar; 31(2):135-40. PubMed ID: 22210009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.