BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26412727)

  • 1. [Bone Cell Biology Assessed by Microscopic Approach. Assessment of bone quality using Raman and infrared spectroscopy].
    Suda HK
    Clin Calcium; 2015 Oct; 25(10):1483-90. PubMed ID: 26412727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.
    Taylor EA; Lloyd AA; Salazar-Lara C; Donnelly E
    Appl Spectrosc; 2017 Oct; 71(10):2404-2410. PubMed ID: 28485618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.
    Sroka-Bartnicka A; Kimber JA; Borkowski L; Pawlowska M; Polkowska I; Kalisz G; Belcarz A; Jozwiak K; Ginalska G; Kazarian SG
    Anal Bioanal Chem; 2015 Oct; 407(25):7775-85. PubMed ID: 26277184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational spectroscopic techniques to assess bone quality.
    Paschalis EP; Gamsjaeger S; Klaushofer K
    Osteoporos Int; 2017 Aug; 28(8):2275-2291. PubMed ID: 28378291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.
    Turunen MJ; Saarakkala S; Rieppo L; Helminen HJ; Jurvelin JS; Isaksson H
    Appl Spectrosc; 2011 Jun; 65(6):595-603. PubMed ID: 21639980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accretion of bone quantity and quality in the developing mouse skeleton.
    Miller LM; Little W; Schirmer A; Sheik F; Busa B; Judex S
    J Bone Miner Res; 2007 Jul; 22(7):1037-45. PubMed ID: 17402847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of chemical compositions of skin calcified deposit by vibrational microspectroscopies.
    Liu MT; Cheng WT; Li MJ; Liu HN; Yang DM; Lin SY
    Arch Dermatol Res; 2005 Nov; 297(5):231-4. PubMed ID: 16231145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy.
    Draper ER; Morris MD; Camacho NP; Matousek P; Towrie M; Parker AW; Goodship AE
    J Bone Miner Res; 2005 Nov; 20(11):1968-72. PubMed ID: 16234970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman Spectroscopic Analysis to Detect Reduced Bone Quality after Sciatic Neurectomy in Mice.
    Ishimaru Y; Oshima Y; Imai Y; Iimura T; Takanezawa S; Hino K; Miura H
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30477282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural evaluation of human and sheep bone and comparison with synthetic hydroxyapatite by FT-Raman spectroscopy.
    Rehman I; Smith R; Hench LL; Bonfield W
    J Biomed Mater Res; 1995 Oct; 29(10):1287-94. PubMed ID: 8557731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Assessment of bone quality. Bone quality as the determinant of bone strength].
    Mori S
    Clin Calcium; 2008 Mar; 18(3):293-9. PubMed ID: 18310815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcification of senile cataractous lens determined by Fourier transform infrared (FTIR) and Raman microspectroscopies.
    Chen KH; Cheng WT; Li MJ; Yang DM; Lin SY
    J Microsc; 2005 Jul; 219(Pt 1):36-41. PubMed ID: 15998364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier Transform Infrared Imaging of Bone.
    Paschalis EP
    Methods Mol Biol; 2019; 1914():641-649. PubMed ID: 30729490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared assessment of bone quality: a review.
    Paschalis EP; Mendelsohn R; Boskey AL
    Clin Orthop Relat Res; 2011 Aug; 469(8):2170-8. PubMed ID: 21210314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational spectroscopic imaging for the evaluation of matrix and mineral chemistry.
    Gamsjaeger S; Mendelsohn R; Boskey AL; Gourion-Arsiquaud S; Klaushofer K; Paschalis EP
    Curr Osteoporos Rep; 2014 Dec; 12(4):454-64. PubMed ID: 25240579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of bone mineral and matrix using backscatter electron imaging and FTIR imaging.
    Boskey AL
    Curr Osteoporos Rep; 2006 Jun; 4(2):71-5. PubMed ID: 16822406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman and Fourier transform infrared imaging for characterization of bone material properties.
    Taylor EA; Donnelly E
    Bone; 2020 Oct; 139():115490. PubMed ID: 32569874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the toughening mechanisms in bone and biomimetic hydroxyapatite materials using Raman microprobe spectroscopy.
    Pezzotti G; Sakakura S
    J Biomed Mater Res A; 2003 May; 65(2):229-36. PubMed ID: 12734817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of vibrational spectroscopy to the study of mineralized tissues (review).
    Carden A; Morris MD
    J Biomed Opt; 2000 Jul; 5(3):259-68. PubMed ID: 10958610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular spectroscopic identification of the water compartments in bone.
    Unal M; Yang S; Akkus O
    Bone; 2014 Oct; 67():228-36. PubMed ID: 25065717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.