BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26412872)

  • 1. Altering crystal growth and annealing in ice-templated scaffolds.
    Pawelec KM; Husmann A; Best SM; Cameron RE
    J Mater Sci; 2015; 50(23):7537-7543. PubMed ID: 26412872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A design protocol for tailoring ice-templated scaffold structure.
    Pawelec KM; Husmann A; Best SM; Cameron RE
    J R Soc Interface; 2014 Mar; 11(92):20130958. PubMed ID: 24402916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex architectural control of ice-templated collagen scaffolds using a predictive model.
    Cyr JA; Husmann A; Best SM; Cameron RE
    Acta Biomater; 2022 Nov; 153():260-272. PubMed ID: 36155096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding anisotropy and architecture in ice-templated biopolymer scaffolds.
    Pawelec KM; Husmann A; Best SM; Cameron RE
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():141-7. PubMed ID: 24582233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations.
    Pot MW; Faraj KA; Adawy A; van Enckevort WJ; van Moerkerk HT; Vlieg E; Daamen WF; van Kuppevelt TH
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8495-505. PubMed ID: 25822583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the intrinsic permeability of ice-templated collagen scaffolds as a function of their structural and mechanical properties.
    Mohee L; Offeddu GS; Husmann A; Oyen ML; Cameron RE
    Acta Biomater; 2019 Jan; 83():189-198. PubMed ID: 30366136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between crosslinking and ice nucleation controls the porous structure of freeze-dried hydrogel scaffolds.
    Grenier J; Duval H; Lv P; Barou F; Le Guilcher C; Aid R; David B; Letourneur D
    Biomater Adv; 2022 Aug; 139():212973. PubMed ID: 35891598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ice-templating of anisotropic structures with high permeability.
    Pawelec KM; van Boxtel HA; Kluijtmans SGJM
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():628-636. PubMed ID: 28482572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of heat-transfer capability on micropore structure of freeze-drying alginate scaffold.
    Wang C; Jiang W; Zuo W; Han G; Zhang Y
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():944-949. PubMed ID: 30274131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ice Templating Soft Matter: Fundamental Principles and Fabrication Approaches to Tailor Pore Structure and Morphology and Their Biomedical Applications.
    Joukhdar H; Seifert A; Jüngst T; Groll J; Lord MS; Rnjak-Kovacina J
    Adv Mater; 2021 Aug; 33(34):e2100091. PubMed ID: 34236118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering.
    Francis NL; Hunger PM; Donius AE; Riblett BW; Zavaliangos A; Wegst UG; Wheatley MA
    J Biomed Mater Res A; 2013 Dec; 101(12):3493-503. PubMed ID: 23596011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the Architecture of Freeze-Dried Collagen Scaffolds with Ultrasound-Induced Nucleation.
    Song X; Philpott MA; Best SM; Cameron RE
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer.
    Passot S; Tréléa IC; Marin M; Galan M; Morris GJ; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074511. PubMed ID: 19640147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Root Cause Analysis of An Inverse Relationship Between The Ice Nucleation Temperature, Process Efficiency And Quality of A Lyophilized Product.
    Korang-Yeboah M; Ako-Adounvo AM; Hengst L; Dong X; Zhang S; Ma L; Connor TO; Ashraf M
    J Pharm Sci; 2023 Dec; 112(12):3035-3044. PubMed ID: 37648156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf.
    Searles JA; Carpenter JF; Randolph TW
    J Pharm Sci; 2001 Jul; 90(7):860-71. PubMed ID: 11458335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and mechanical properties of β-TCP scaffolds prepared by ice-templating with preset ice front velocities.
    Flauder S; Gbureck U; Müller FA
    Acta Biomater; 2014 Dec; 10(12):5148-5155. PubMed ID: 25159370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Annealing and Controlled Ice Nucleation on Properties of A Lyophilized 50 mg/ml MAB Formulation.
    Wang J; Searles JA; Torres E; Tchessalov SA; Young AL
    J Pharm Sci; 2022 Sep; 111(9):2639-2644. PubMed ID: 35613684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic shelf-scale modeling framework for the freezing stage in freeze-drying processes.
    Deck LT; Ochsenbein DR; Mazzotti M
    Int J Pharm; 2022 Feb; 613():121276. PubMed ID: 34767908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Heat Transfer at the Bottom of Vials for Consistent Freeze Drying with Unidirectional Structured Ice.
    Rosa M; Tiago JM; Singh SK; Geraldes V; Rodrigues MA
    AAPS PharmSciTech; 2016 Oct; 17(5):1049-59. PubMed ID: 26502885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.