These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26412909)

  • 1. Variable selection models based on multiple imputation with an application for predicting median effective dose and maximum effect.
    Wan Y; Datta S; Conklin DJ; Kong M
    J Stat Comput Simul; 2015; 85(9):1902-1916. PubMed ID: 26412909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparison of Sparse Partial Least Squares and Elastic Net in Wavelength Selection on NIR Spectroscopy Data.
    Fu GH; Zong MJ; Wang FH; Yi LZ
    Int J Anal Chem; 2019; 2019():7314916. PubMed ID: 31467549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variable selection under multiple imputation using the bootstrap in a prognostic study.
    Heymans MW; van Buuren S; Knol DL; van Mechelen W; de Vet HC
    BMC Med Res Methodol; 2007 Jul; 7():33. PubMed ID: 17629912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rise of multiple imputation: a review of the reporting and implementation of the method in medical research.
    Hayati Rezvan P; Lee KJ; Simpson JA
    BMC Med Res Methodol; 2015 Apr; 15():30. PubMed ID: 25880850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Handling missing rows in multi-omics data integration: multiple imputation in multiple factor analysis framework.
    Voillet V; Besse P; Liaubet L; San Cristobal M; González I
    BMC Bioinformatics; 2016 Oct; 17(1):402. PubMed ID: 27716030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable selection for multiply-imputed data with application to dioxin exposure study.
    Chen Q; Wang S
    Stat Med; 2013 Sep; 32(21):3646-59. PubMed ID: 23526243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple imputation in veterinary epidemiological studies: a case study and simulation.
    Dohoo IR; Nielsen CR; Emanuelson U
    Prev Vet Med; 2016 Jul; 129():35-47. PubMed ID: 27317321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VARIABLE SELECTION AND PREDICTION WITH INCOMPLETE HIGH-DIMENSIONAL DATA.
    Liu Y; Wang Y; Feng Y; Wall MM
    Ann Appl Stat; 2016 Mar; 10(1):418-450. PubMed ID: 27213023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing evidence-based falls prevention data with significant missing information using variable selection after multiple imputation.
    Cheng Y; Li Y; Lee Smith M; Li C; Shen Y
    J Appl Stat; 2023; 50(3):724-743. PubMed ID: 36819083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model selection of generalized estimating equations with multiply imputed longitudinal data.
    Shen CW; Chen YH
    Biom J; 2013 Nov; 55(6):899-911. PubMed ID: 23970494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of strategies for selecting auxiliary variables for multiple imputation.
    Mainzer RM; Nguyen CD; Carlin JB; Moreno-Betancur M; White IR; Lee KJ
    Biom J; 2024 Jan; 66(1):e2200291. PubMed ID: 38285405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cox regression analysis with missing covariates via nonparametric multiple imputation.
    Hsu CH; Yu M
    Stat Methods Med Res; 2019 Jun; 28(6):1676-1688. PubMed ID: 29717943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable Selection in the Presence of Missing Data: Imputation-based Methods.
    Zhao Y; Long Q
    Wiley Interdiscip Rev Comput Stat; 2017; 9(5):. PubMed ID: 29085552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable selection with multiply-imputed datasets: choosing between stacked and grouped methods.
    Du J; Boss J; Han P; Beesley LJ; Kleinsasser M; Goutman SA; Batterman S; Feldman EL; Mukherjee B
    J Comput Graph Stat; 2022; 31(4):1063-1075. PubMed ID: 36644406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MISNN: Multiple Imputation via Semi-parametric Neural Networks.
    Bu Z; Dai Z; Zhang Y; Long Q
    Adv Knowl Discov Data Min; 2023 May; 13935():430-442. PubMed ID: 38370342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bias-corrected estimator in multiple imputation for missing data.
    Tomita H; Fujisawa H; Henmi M
    Stat Med; 2018 Oct; 37(23):3373-3386. PubMed ID: 29845646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple imputation for national public-use datasets and its possible application for gestational age in United States Natality files.
    Parker JD; Schenker N
    Paediatr Perinat Epidemiol; 2007 Sep; 21 Suppl 2():97-105. PubMed ID: 17803623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-step semiparametric method to accommodate sampling weights in multiple imputation.
    Zhou H; Elliott MR; Raghunathan TE
    Biometrics; 2016 Mar; 72(1):242-52. PubMed ID: 26393409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple imputation of missing data in large studies with many variables: A fully conditional specification approach using partial least squares.
    Grund S; Lüdtke O; Robitzsch A
    Psychol Methods; 2024 Sep; ():. PubMed ID: 39347773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust imputation method for missing responses and covariates in sample selection models.
    Ogundimu EO; Collins GS
    Stat Methods Med Res; 2019 Jan; 28(1):102-116. PubMed ID: 28679340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.