These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 26413090)
1. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM. Zhang C; He Y; Yuan L; Xiang S; Wang J Comput Intell Neurosci; 2015; 2015():918305. PubMed ID: 26413090 [TBL] [Abstract][Full Text] [Related]
2. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries. Jafari S; Byun YC Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502223 [TBL] [Abstract][Full Text] [Related]
3. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture. Li L; Wang P; Chao KH; Zhou Y; Xie Y PLoS One; 2016; 11(9):e0163004. PubMed ID: 27632176 [TBL] [Abstract][Full Text] [Related]
4. Remaining Useful Life Prediction of Lithium-Ion Batteries Using Neural Networks with Adaptive Bayesian Learning. Pugalenthi K; Park H; Hussain S; Raghavan N Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632212 [TBL] [Abstract][Full Text] [Related]
5. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries. Yang Q; Xu J; Cao B; Li X PLoS One; 2017; 12(2):e0172424. PubMed ID: 28212405 [TBL] [Abstract][Full Text] [Related]
6. Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile. Wang Z; Zeng S; Guo J; Qin T PLoS One; 2018; 13(7):e0200169. PubMed ID: 29979778 [TBL] [Abstract][Full Text] [Related]
7. A Hybrid Data-Driven Approach for Multistep Ahead Prediction of State of Health and Remaining Useful Life of Lithium-Ion Batteries. Ali MU; Zafar A; Masood H; Kallu KD; Khan MA; Tariq U; Kim YJ; Chang B Comput Intell Neurosci; 2022; 2022():1575303. PubMed ID: 35733564 [TBL] [Abstract][Full Text] [Related]
8. A New Multivariate Approach for Prognostics Based on Extreme Learning Machine and Fuzzy Clustering. Javed K; Gouriveau R; Zerhouni N IEEE Trans Cybern; 2015 Dec; 45(12):2626-39. PubMed ID: 25643420 [TBL] [Abstract][Full Text] [Related]
9. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Dunn JB; Gaines L; Sullivan J; Wang MQ Environ Sci Technol; 2012 Nov; 46(22):12704-10. PubMed ID: 23075406 [TBL] [Abstract][Full Text] [Related]
10. Environmental characteristics comparison of Li-ion batteries and Ni-MH batteries under the uncertainty of cycle performance. Yu Y; Wang X; Wang D; Huang K; Wang L; Bao L; Wu F J Hazard Mater; 2012 Aug; 229-230():455-60. PubMed ID: 22763226 [TBL] [Abstract][Full Text] [Related]
12. Modeling and prediction for discharge lifetime of battery systems using hybrid evolutionary algorithms. Cao H; Yu J; Kang L; Yang H; Ai X Comput Chem; 2001 May; 25(3):251-9. PubMed ID: 11339408 [TBL] [Abstract][Full Text] [Related]
13. Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. Lee DJ; Agostini M; Park JW; Sun YK; Hassoun J; Scrosati B ChemSusChem; 2013 Dec; 6(12):2245-8. PubMed ID: 23943264 [TBL] [Abstract][Full Text] [Related]
14. Nanostructured silicon anodes for lithium ion rechargeable batteries. Teki R; Datta MK; Krishnan R; Parker TC; Lu TM; Kumta PN; Koratkar N Small; 2009 Oct; 5(20):2236-42. PubMed ID: 19739146 [TBL] [Abstract][Full Text] [Related]
15. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device. Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478 [TBL] [Abstract][Full Text] [Related]
16. A Hybrid Data Preprocessing-Based Hierarchical Attention BiLSTM Network for Remaining Useful Life Prediction of Spacecraft Lithium-Ion Batteries. Luo T; Liu M; Shi P; Duan G; Cao X IEEE Trans Neural Netw Learn Syst; 2023 Sep; PP():. PubMed ID: 37725745 [TBL] [Abstract][Full Text] [Related]
17. Prediction of State of Health of Lithium-Ion Battery Using Health Index Informed Attention Model. Wei Y Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904789 [TBL] [Abstract][Full Text] [Related]
18. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. Tang Y; Zhang Y; Deng J; Qi D; Leow WR; Wei J; Yin S; Dong Z; Yazami R; Chen Z; Chen X Angew Chem Int Ed Engl; 2014 Dec; 53(49):13488-92. PubMed ID: 25168684 [TBL] [Abstract][Full Text] [Related]
19. Recent Progress in Lithium-Ion Battery Safety Monitoring Based on Fiber Bragg Grating Sensors. Chen D; Zhao Q; Zheng Y; Xu Y; Chen Y; Ni J; Zhao Y Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420774 [TBL] [Abstract][Full Text] [Related]