These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26413156)

  • 1. Identification of novel metabolic interactions controlling carbon flux from xylose to ethanol in natural and recombinant yeasts.
    Trausinger G; Gruber C; Krahulec S; Magnes C; Nidetzky B; Klimacek M
    Biotechnol Biofuels; 2015; 8():157. PubMed ID: 26413156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis.
    Klimacek M; Krahulec S; Sauer U; Nidetzky B
    Appl Environ Microbiol; 2010 Nov; 76(22):7566-74. PubMed ID: 20889786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic flux analysis for metabolome data validation of naturally xylose-fermenting yeasts.
    Veras HCT; Campos CG; Nascimento IF; Abdelnur PV; Almeida JRM; Parachin NS
    BMC Biotechnol; 2019 Aug; 19(1):58. PubMed ID: 31382948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae.
    Cadete RM; de Las Heras AM; Sandström AG; Ferreira C; Gírio F; Gorwa-Grauslund MF; Rosa CA; Fonseca C
    Biotechnol Biofuels; 2016; 9():167. PubMed ID: 27499810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae.
    Petschacher B; Nidetzky B
    Microb Cell Fact; 2008 Mar; 7():9. PubMed ID: 18346277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains.
    Bettiga M; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Biofuels; 2008 Oct; 1(1):16. PubMed ID: 18947407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic pathway analysis of the xylose-metabolizing yeast protoplast fusant ZLYRHZ7.
    Ge J; Du R; Song G; Zhang Y; Ping W
    J Biosci Bioeng; 2017 Oct; 124(4):386-391. PubMed ID: 28527826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae.
    Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form.
    Pratter SM; Eixelsberger T; Nidetzky B
    Bioresour Technol; 2015 Dec; 198():732-8. PubMed ID: 26452180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
    Zhang GC; Kong II; Wei N; Peng D; Turner TL; Sung BH; Sohn JH; Jin YS
    Biotechnol Bioeng; 2016 Dec; 113(12):2587-2596. PubMed ID: 27240865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae.
    Karhumaa K; Garcia Sanchez R; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Microb Cell Fact; 2007 Feb; 6():5. PubMed ID: 17280608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis.
    Shin M; Kim JW; Ye S; Kim S; Jeong D; Lee DY; Kim JN; Jin YS; Kim KH; Kim SR
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5435-5446. PubMed ID: 31001747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic flux analysis model for optimizing xylose conversion into ethanol by the natural C5-fermenting yeast Candida shehatae.
    Bideaux C; Montheard J; Cameleyre X; Molina-Jouve C; Alfenore S
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1489-1499. PubMed ID: 26536879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054.
    Wahlbom CF; van Zyl WH; Jönsson LJ; Hahn-Hägerdal B; Otero RR
    FEMS Yeast Res; 2003 May; 3(3):319-26. PubMed ID: 12689639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis.
    Jo JH; Park YC; Jin YS; Seo JH
    Bioresour Technol; 2017 Oct; 241():88-94. PubMed ID: 28550778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.