These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 26413156)
21. High-temperature ethanol production by a series of recombinant xylose-fermenting Kluyveromyces marxianus strains. Suzuki T; Hoshino T; Matsushika A Enzyme Microb Technol; 2019 Oct; 129():109359. PubMed ID: 31307575 [TBL] [Abstract][Full Text] [Related]
22. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC; Turner TL; Jin YS J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721 [TBL] [Abstract][Full Text] [Related]
23. Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations. Wahlbom CF; Eliasson A; Hahn-Hägerdal B Biotechnol Bioeng; 2001 Feb; 72(3):289-96. PubMed ID: 11135198 [TBL] [Abstract][Full Text] [Related]
24. Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae. Kobayashi Y; Sahara T; Ohgiya S; Kamagata Y; Fujimori KE AMB Express; 2018 Aug; 8(1):139. PubMed ID: 30151682 [TBL] [Abstract][Full Text] [Related]
25. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862 [TBL] [Abstract][Full Text] [Related]
26. Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. Jeppsson M; Träff K; Johansson B; Hahn-Hägerdal B; Gorwa-Grauslund MF FEMS Yeast Res; 2003 Apr; 3(2):167-75. PubMed ID: 12702449 [TBL] [Abstract][Full Text] [Related]
27. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. Kuyper M; Winkler AA; van Dijken JP; Pronk JT FEMS Yeast Res; 2004 Mar; 4(6):655-64. PubMed ID: 15040955 [TBL] [Abstract][Full Text] [Related]
28. Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Veras HCT; Parachin NS; Almeida JRM Microb Cell Fact; 2017 Sep; 16(1):153. PubMed ID: 28903764 [TBL] [Abstract][Full Text] [Related]
29. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613 [TBL] [Abstract][Full Text] [Related]
31. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Pitkänen JP; Rintala E; Aristidou A; Ruohonen L; Penttilä M Appl Microbiol Biotechnol; 2005 Jun; 67(6):827-37. PubMed ID: 15630585 [TBL] [Abstract][Full Text] [Related]
32. Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae. Batt CA; Caryallo S; Easson DD; Akedo M; Sinskey AJ Biotechnol Bioeng; 1986 Apr; 28(4):549-53. PubMed ID: 18555359 [TBL] [Abstract][Full Text] [Related]
33. Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose. Bergdahl B; Heer D; Sauer U; Hahn-Hägerdal B; van Niel EW Biotechnol Biofuels; 2012 May; 5(1):34. PubMed ID: 22587303 [TBL] [Abstract][Full Text] [Related]
34. Co-expression of xylose reductase gene from Candida shehatae and endogenous xylitol dehydrogenase gene in Saccharomyces cerevisiae and the effect of metabolizing xylose to ethanol. Zhang J; Yang M; Tian S; Zhang Y; Yang X Prikl Biokhim Mikrobiol; 2010; 46(4):456-61. PubMed ID: 20873171 [TBL] [Abstract][Full Text] [Related]
35. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37. Li YC; Mitsumasu K; Gou ZX; Gou M; Tang YQ; Li GY; Wu XL; Akamatsu T; Taguchi H; Kida K Appl Microbiol Biotechnol; 2016 Feb; 100(3):1531-1542. PubMed ID: 26603762 [TBL] [Abstract][Full Text] [Related]
36. Disruption of PHO13 improves ethanol production via the xylose isomerase pathway. Bamba T; Hasunuma T; Kondo A AMB Express; 2016 Mar; 6(1):4. PubMed ID: 26769491 [TBL] [Abstract][Full Text] [Related]
37. Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01. Xu JR; Zhao XQ; Liu CG; Bai FW Protein Pept Lett; 2018; 25(2):202-207. PubMed ID: 29359658 [TBL] [Abstract][Full Text] [Related]
38. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695 [TBL] [Abstract][Full Text] [Related]
39. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes. Bao X; Gao D; Qu Y; Wang Z; Walfridssion M; Hahn-Hagerbal B Chin J Biotechnol; 1997; 13(4):225-31. PubMed ID: 9631257 [TBL] [Abstract][Full Text] [Related]
40. Metabolism of glucose and xylose as single and mixed feed in Debaryomyces nepalensis NCYC 3413: production of industrially important metabolites. Kumar S; Gummadi SN Appl Microbiol Biotechnol; 2011 Mar; 89(5):1405-15. PubMed ID: 21085948 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]