These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26413557)

  • 1. Biomimetic Scaffolds for Osteogenesis.
    Yuan N; Rezzadeh KS; Lee JC
    Receptors Clin Investig; 2015; 2(3):. PubMed ID: 26413557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy.
    Jiang S; Wang M; He J
    Bioeng Transl Med; 2021 May; 6(2):e10206. PubMed ID: 34027093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive Glass for Large Bone Repair.
    Jia W; Lau GY; Huang W; Zhang C; Tomsia AP; Fu Q
    Adv Healthc Mater; 2015 Dec; 4(18):2842-8. PubMed ID: 26582584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing Collagen Scaffolds for Bone Engineering: Effects of Cross-linking and Mineral Content on Structural Contraction and Osteogenesis.
    Lee JC; Pereira CT; Ren X; Huang W; Bischoff D; Weisgerber DW; Yamaguchi DT; Harley BA; Miller TA
    J Craniofac Surg; 2015 Sep; 26(6):1992-6. PubMed ID: 26147021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine.
    Tollemar V; Collier ZJ; Mohammed MK; Lee MJ; Ameer GA; Reid RR
    Genes Dis; 2016 Mar; 3(1):56-71. PubMed ID: 27239485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A concept for scaffold-based tissue engineering in alveolar cleft osteoplasty.
    Berger M; Probst F; Schwartz C; Cornelsen M; Seitz H; Ehrenfeld M; Otto S
    J Craniomaxillofac Surg; 2015 Jul; 43(6):830-6. PubMed ID: 26027868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Taking cues from the extracellular matrix to design bone-mimetic regenerative scaffolds.
    Curry AS; Pensa NW; Barlow AM; Bellis SL
    Matrix Biol; 2016; 52-54():397-412. PubMed ID: 26940231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives.
    Roseti L; Parisi V; Petretta M; Cavallo C; Desando G; Bartolotti I; Grigolo B
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():1246-1262. PubMed ID: 28575964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional (3D) printed biomimetic hierarchical scaffold with a covalent modular release system for osteogenesis.
    Chen G; Sun Y; Lu F; Jiang A; Subedi D; Kong P; Wang X; Yu T; Chi H; Song C; Liu K; Qi P; Yan J; Ji Y
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109842. PubMed ID: 31500042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic multidirectional scaffolds for zonal osteochondral tissue engineering via a lyophilization bonding approach.
    Clearfield D; Nguyen A; Wei M
    J Biomed Mater Res A; 2018 Apr; 106(4):948-958. PubMed ID: 29115031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced osteogenic differentiation of human bone-derived mesenchymal stem cells in 3-dimensional printed porous titanium scaffolds by static magnetic field through up-regulating Smad4.
    He Y; Yu L; Liu J; Li Y; Wu Y; Huang Z; Wu D; Wang H; Wu Z; Qiu G
    FASEB J; 2019 May; 33(5):6069-6081. PubMed ID: 30763124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenesis and angiogenesis: the potential for engineering bone.
    Kanczler JM; Oreffo RO
    Eur Cell Mater; 2008 May; 15():100-14. PubMed ID: 18454418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic polymer scaffolds to promote stem cell-mediated osteogenesis.
    Ko E; Cho SW
    Int J Stem Cells; 2013 Nov; 6(2):87-91. PubMed ID: 24386552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.
    Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL
    J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis.
    Song JE; Tripathy N; Lee DH; Park JH; Khang G
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current advances for bone regeneration based on tissue engineering strategies.
    Shi R; Huang Y; Ma C; Wu C; Tian W
    Front Med; 2019 Apr; 13(2):160-188. PubMed ID: 30047029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone Regeneration Based on Tissue Engineering Conceptions - A 21st Century Perspective.
    Henkel J; Woodruff MA; Epari DR; Steck R; Glatt V; Dickinson IC; Choong PF; Schuetz MA; Hutmacher DW
    Bone Res; 2013 Sep; 1(3):216-48. PubMed ID: 26273505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.