BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 26413641)

  • 1. Effect of Blend Composition on Binary Organic Solar Cells Using a Low Band Gap Polymer.
    Wright M; Lin R; Tayebjee MJ; Yang X; Veettil BP; Wen X; Uddin A
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2204-11. PubMed ID: 26413641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the electron mobility in polymer solar cells with different fullerene acceptors.
    Gao D; Djukic B; Shi W; Bridges CR; Kozycz LM; Seferos DS
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8038-43. PubMed ID: 23845022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Blend Composition and Additives on the Morphology of PCPDTBT:PC71BM Thin Films for Organic Photovoltaics.
    Schaffer CJ; Schlipf J; Dwi Indari E; Su B; Bernstorff S; Müller-Buschbaum P
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21347-55. PubMed ID: 26355854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quaternary Solar Cells with 12.5% Efficiency Enabled with Non-Fullerene and Fullerene Acceptor Guests to Improve Open Circuit Voltage and Film Morphology.
    Li W; Liu W; Zhang X; Yan D; Liu F; Zhan C
    Macromol Rapid Commun; 2019 Nov; 40(21):e1900353. PubMed ID: 31531913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Open-Circuit Voltage and Power Conversion Efficiency Study of Fullerene Ternary Organic Solar Cells Based on Oligomer/Oligomer and Oligomer/Polymer.
    Zhang G; Zhou C; Sun C; Jia X; Xu B; Ying L; Huang F; Cao Y
    Macromol Rapid Commun; 2017 Jul; 38(14):. PubMed ID: 28485819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel donor-acceptor polymer containing 4,7-bis(thiophen-2-yl)benzo[c][1,2,5]thiadiazole for polymer solar cells with power conversion efficiency of 6.21%.
    Han L; Bao X; Hu T; Du Z; Chen W; Zhu D; Liu Q; Sun M; Yang R
    Macromol Rapid Commun; 2014 Jun; 35(12):1153-7. PubMed ID: 24664990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ternary Blend Strategy for Achieving High-Efficiency Organic Photovoltaic Devices for Indoor Applications.
    Singh R; Shin SC; Lee H; Kim M; Shim JW; Cho K; Lee JJ
    Chemistry; 2019 Apr; 25(24):6154-6161. PubMed ID: 30801818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers.
    Khlyabich PP; Burkhart B; Thompson BC
    J Am Chem Soc; 2012 Jun; 134(22):9074-7. PubMed ID: 22587584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anthracene-containing wide-band-gap conjugated polymers for high-open-circuit-voltage polymer solar cells.
    Gong X; Li C; Lu Z; Li G; Mei Q; Fang T; Bo Z
    Macromol Rapid Commun; 2013 Jul; 34(14):1163-8. PubMed ID: 23740833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-efficiency polymer solar cells enhanced by solvent treatment.
    Zhou H; Zhang Y; Seifter J; Collins SD; Luo C; Bazan GC; Nguyen TQ; Heeger AJ
    Adv Mater; 2013 Mar; 25(11):1646-52. PubMed ID: 23355303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally Stable Bulk Heterojunction Prepared by Sequential Deposition of Nanostructured Polymer and Fullerene.
    Hwang H; Lee H; Shafian S; Lee W; Seok J; Ryu KY; Yeol Ryu D; Kim K
    Polymers (Basel); 2017 Sep; 9(9):. PubMed ID: 30965759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon enhanced organic solar cell with different silver nanosphere sizes.
    Uddin A; Yang X
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5752-60. PubMed ID: 25935999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [70]fullerene-based materials for organic solar cells.
    Troshin PA; Hoppe H; Peregudov AS; Egginger M; Shokhovets S; Gobsch G; Sariciftci NS; Razumov VF
    ChemSusChem; 2011 Jan; 4(1):119-24. PubMed ID: 21226221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonfullerene/Fullerene Acceptor Blend with a Tunable Energy State for High-Performance Ternary Organic Solar Cells.
    Kim M; Lee J; Sin DH; Lee H; Woo HY; Cho K
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25570-25579. PubMed ID: 29983048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the nanoscale phase separation and photophysics properties of low-bandgap polymer:fullerene blend film by near-field spectroscopic mapping.
    Wang X; Azimi H; Mack HG; Morana M; Egelhaaf HJ; Meixner AJ; Zhang D
    Small; 2011 Oct; 7(19):2793-800. PubMed ID: 21850652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolved phase separation toward balanced charge transport and high efficiency in polymer solar cells.
    Fan H; Zhang M; Guo X; Li Y; Zhan X
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3646-53. PubMed ID: 21815608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous PCDTBT:PC
    Prunet G; Parrenin L; Pavlopoulou E; Pecastaings G; Brochon C; Hadziioannou G; Cloutet E
    Macromol Rapid Commun; 2018 Jan; 39(2):. PubMed ID: 29065231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benzothiadiazole Versus Thiophene: Influence of the Auxiliary Acceptor on the Photovoltaic Properties of Donor-Acceptor-Based Copolymers.
    Li Z; Weng K; Chen A; Sun X; Wei D; Yu M; Huo L; Sun Y
    Macromol Rapid Commun; 2018 Jan; 39(2):. PubMed ID: 29068509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced performance in inverted polymer solar cells with D-π-A-type molecular dye incorporated on ZnO buffer layer.
    Song CE; Ryu KY; Hong SJ; Bathula C; Lee SK; Shin WS; Lee JC; Choi SK; Kim JH; Moon SJ
    ChemSusChem; 2013 Aug; 6(8):1445-54. PubMed ID: 23897708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-efficiency large-bandgap material for polymer solar cells.
    Wei H; Chao YH; Kang C; Li C; Lu H; Gong X; Dong H; Hu W; Hsu CS; Bo Z
    Macromol Rapid Commun; 2015 Jan; 36(1):84-9. PubMed ID: 25420922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.