These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 26413646)
1. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells. Park J; Shin C; Park H; Jung J; Lee YJ; Bong S; Dao VA; Balaji N; Yi J J Nanosci Nanotechnol; 2015 Mar; 15(3):2241-6. PubMed ID: 26413646 [TBL] [Abstract][Full Text] [Related]
2. Reduction of tail state on boron doped hydrogenated amorphous silicon oxide films prepared at high hydrogen dilution. Park J; Iftiquar SM; Lee S; Park H; Shin C; Jung J; Lee YJ; Balaji N; Yi J J Nanosci Nanotechnol; 2013 Dec; 13(12):7826-33. PubMed ID: 24266147 [TBL] [Abstract][Full Text] [Related]
3. Deposition of boron-doped nanocrystalline silicon carbide thin films using H Liu J; Zhang Y; Fan Z; Sun H; Shan F Nanotechnology; 2020 Apr; 31(27):275705. PubMed ID: 32217826 [TBL] [Abstract][Full Text] [Related]
4. A novel method to make boron-doped microcrystalline silicon thin films with optimal crystalline volume fraction for thin films solar cell applications. Shin C; Park J; Kim S; Park H; Jung J; Bong S; Lee YJ; Yi J J Nanosci Nanotechnol; 2014 Dec; 14(12):9388-94. PubMed ID: 25971071 [TBL] [Abstract][Full Text] [Related]
5. Development of high conducting phosphorous doped nanocrystalline thin silicon films for silicon heterojunction solar cells application. Bhattacharya S; Pandey A; Alam S; Komarala VK Nanotechnology; 2024 May; 35(32):. PubMed ID: 38710179 [TBL] [Abstract][Full Text] [Related]
6. Highly conducting phosphorous doped Nc-Si:H thin films deposited at high deposition rate by hot-wire chemical vapor deposition method. Waman VS; Kamble MM; Ghosh SS; Mayabadi A; Sathe VG; Amalnekar DP; Pathan HM; Jadkar SR J Nanosci Nanotechnol; 2012 Nov; 12(11):8459-66. PubMed ID: 23421231 [TBL] [Abstract][Full Text] [Related]
7. Preparation of born-doped a-SiC:H thin films by ICP-CVD method and to the application of large-area heterojunction solar cells. Jeong C; Kim YB; Lee SH; Kim JH J Nanosci Nanotechnol; 2010 May; 10(5):3321-5. PubMed ID: 20358948 [TBL] [Abstract][Full Text] [Related]
8. Novel Boron-Doped p-Type Cu K Markose K; Shaji M; Bhatia S; Nair PR; Saji KJ; Antony A; Jayaraj MK ACS Appl Mater Interfaces; 2020 Mar; 12(11):12972-12981. PubMed ID: 32083458 [TBL] [Abstract][Full Text] [Related]
9. Enhanced performance of flexible nanocrystalline silicon thin-film solar cells using seed layers with high hydrogen dilution. Lee JE; Kim D; Yoon KH; Cho JS J Nanosci Nanotechnol; 2013 Dec; 13(12):7891-4. PubMed ID: 24266159 [TBL] [Abstract][Full Text] [Related]
10. Preparation of phosphorus doped hydrogenated microcrystalline silicon thin films by inductively coupled plasma chemical vapor deposition and their characteristics for solar cell applications. Jeong C; Boo S; Kim TW; Choi BH; Kim HS; Chang DR; Lee JH; Kamisako K J Nanosci Nanotechnol; 2008 Oct; 8(10):5521-6. PubMed ID: 19198490 [TBL] [Abstract][Full Text] [Related]
11. Inserted layer of AZO thin film with high work function between transparent conductive oxide and p-layer and its solar cell application. Park H; Lee J; Lee YJ; Kim H; Jung J; Hussain SQ; Park J; Shin C; Kim S; Ahn S; Yil J J Nanosci Nanotechnol; 2013 Oct; 13(10):7116-8. PubMed ID: 24245205 [TBL] [Abstract][Full Text] [Related]
12. Nanocrystalline silicon thin film growth and application for silicon heterojunction solar cells: a short review. Sharma M; Panigrahi J; Komarala VK Nanoscale Adv; 2021 Jun; 3(12):3373-3383. PubMed ID: 36133724 [TBL] [Abstract][Full Text] [Related]
13. Crystalline Fraction and Doping Concentration Effect on Heterojunction Solar Cells n-Doped µc-Si:H Back Surface Field Layer. Kim S; Shin C; Balaji N; Yi J J Nanosci Nanotechnol; 2015 Mar; 15(3):2294-9. PubMed ID: 26413655 [TBL] [Abstract][Full Text] [Related]
14. Heavy Boron-Doped Silicon Tunneling Inter-layer Enables Efficient Silicon Heterojunction Solar Cells. Zhou Y; Zhang H; Li Z; Huang S; Du J; Han A; Shi J; Wang G; Shi Q; Zhao W; Fu H; Fan B; Meng F; Liu W; Liu Z; Zhang L ACS Appl Mater Interfaces; 2024 Sep; 16(35):46889-46896. PubMed ID: 39169801 [TBL] [Abstract][Full Text] [Related]
15. A Review: Application of Doped Hydrogenated Nanocrystalline Silicon Oxide in High Efficiency Solar Cell Devices. Qiu D; Lambertz A; Duan W; Mazzarella L; Wagner P; Morales-Vilches AB; Yang G; Procel P; Isabella O; Stannowski B; Ding K Adv Sci (Weinh); 2024 Sep; 11(35):e2403728. PubMed ID: 39023199 [TBL] [Abstract][Full Text] [Related]
16. Role of SiN Wang FH; Kuo HH; Yang CF; Liu MC Materials (Basel); 2014 Feb; 7(2):948-962. PubMed ID: 28788494 [TBL] [Abstract][Full Text] [Related]
17. Role of trimethylboron to silane ratio on the properties of p-type nanocrystalline silicon thin film deposited by radio frequency plasma enhanced chemical vapour deposition. Aguas H; Filonovich SA; Bernacka-Wojcik I; Fortunato E; Martins R J Nanosci Nanotechnol; 2010 Apr; 10(4):2547-51. PubMed ID: 20355460 [TBL] [Abstract][Full Text] [Related]
18. Effect of substrate morphology slope distributions on light scattering, nc-Si:H film growth, and solar cell performance. Kim DY; Santbergen R; Jäger K; Sever M; Krč J; Topič M; Hänni S; Zhang C; Heidt A; Meier M; van Swaaij RA; Zeman M ACS Appl Mater Interfaces; 2014 Dec; 6(24):22061-8. PubMed ID: 25418361 [TBL] [Abstract][Full Text] [Related]
19. Characterization of doped amorphous silicon thin films through the investigation of dopant elements by glow discharge spectrometry: a correlation of conductivity and bandgap energy measurements. Sánchez P; Lorenzo O; Menéndez A; Menéndez JL; Gomez D; Pereiro R; Fernández B Int J Mol Sci; 2011; 12(4):2200-15. PubMed ID: 21731436 [TBL] [Abstract][Full Text] [Related]
20. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas. Cheng Q; Xu S; Ostrikov KK Nanotechnology; 2009 May; 20(21):215606. PubMed ID: 19423937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]