These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 26413793)

  • 61. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells.
    Lu W; Ji K; Kirkham J; Yan Y; Boccaccini AR; Kellett M; Jin Y; Yang XB
    Cell Tissue Res; 2014 Apr; 356(1):97-107. PubMed ID: 24408074
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of mechanical strain on human mesenchymal stem cells and ligament fibroblasts in a textured poly(L-lactide) scaffold for ligament tissue engineering.
    Kreja L; Liedert A; Schlenker H; Brenner RE; Fiedler J; Friemert B; Dürselen L; Ignatius A
    J Mater Sci Mater Med; 2012 Oct; 23(10):2575-82. PubMed ID: 22729594
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Rapid attachment of adipose stromal cells on resorbable polymeric scaffolds facilitates the one-step surgical procedure for cartilage and bone tissue engineering purposes.
    Jurgens WJ; Kroeze RJ; Bank RA; Ritt MJ; Helder MN
    J Orthop Res; 2011 Jun; 29(6):853-60. PubMed ID: 21246614
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Engineering adipose tissue from uncultured human adipose stromal vascular fraction on collagen matrix and gelatin sponge scaffolds.
    Lin SD; Huang SH; Lin YN; Wu SH; Chang HW; Lin TM; Chai CY; Lai CS
    Tissue Eng Part A; 2011 Jun; 17(11-12):1489-98. PubMed ID: 21247363
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering.
    Zhu Y; Zhu R; Ma J; Weng Z; Wang Y; Shi X; Li Y; Yan X; Dong Z; Xu J; Tang C; Jin L
    Biomed Mater; 2015 Sep; 10(5):055009. PubMed ID: 26391576
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration.
    Versteegden LR; van Kampen KA; Janke HP; Tiemessen DM; Hoogenkamp HR; Hafmans TG; Roozen EA; Lomme RM; van Goor H; Oosterwijk E; Feitz WF; van Kuppevelt TH; Daamen WF
    Acta Biomater; 2017 Apr; 52():1-8. PubMed ID: 28179160
    [TBL] [Abstract][Full Text] [Related]  

  • 68. 3D Mimicry of Native-Tissue-Fiber Architecture Guides Tendon-Derived Cells and Adipose Stem Cells into Artificial Tendon Constructs.
    Laranjeira M; Domingues RMA; Costa-Almeida R; Reis RL; Gomes ME
    Small; 2017 Aug; 13(31):. PubMed ID: 28631375
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Simvastatin coating of TiO₂ scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells.
    Pullisaar H; Reseland JE; Haugen HJ; Brinchmann JE; Ostrup E
    Biochem Biophys Res Commun; 2014 Apr; 447(1):139-44. PubMed ID: 24704451
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.
    Ambre AH; Katti DR; Katti KS
    J Biomed Mater Res A; 2015 Jun; 103(6):2077-101. PubMed ID: 25331212
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Adipose tissue-derived mesenchymal stem cells as monocultures or cocultures with human umbilical vein endothelial cells: performance in vitro and in rat cranial defects.
    Ma J; Both SK; Ji W; Yang F; Prins HJ; Helder MN; Pan J; Cui FZ; Jansen JA; van den Beucken JJ
    J Biomed Mater Res A; 2014 Apr; 102(4):1026-36. PubMed ID: 23640784
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
    Lee GS; Park JH; Shin US; Kim HW
    Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Serum-converted platelet lysate can substitute for fetal bovine serum in human mesenchymal stromal cell cultures.
    Mojica-Henshaw MP; Jacobson P; Morris J; Kelley L; Pierce J; Boyer M; Reems JA
    Cytotherapy; 2013 Dec; 15(12):1458-68. PubMed ID: 24199591
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Pooled human platelet lysate versus fetal bovine serum-investigating the proliferation rate, chromosome stability and angiogenic potential of human adipose tissue-derived stem cells intended for clinical use.
    Trojahn Kølle SF; Oliveri RS; Glovinski PV; Kirchhoff M; Mathiasen AB; Elberg JJ; Andersen PS; Drzewiecki KT; Fischer-Nielsen A
    Cytotherapy; 2013 Sep; 15(9):1086-97. PubMed ID: 23602579
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Bony engineering using time-release porous scaffolds to provide sustained growth factor delivery.
    Szpalski C; Nguyen PD; Cretiu Vasiliu CE; Chesnoiu-Matei I; Ricci JL; Clark E; Smay JE; Warren SM
    J Craniofac Surg; 2012 May; 23(3):638-44. PubMed ID: 22565873
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Long-term survival and bipotent terminal differentiation of human mesenchymal stem cells (hMSC) in combination with a commercially available three-dimensional collagen scaffold.
    Neuss S; Stainforth R; Salber J; Schenck P; Bovi M; Knüchel R; Perez-Bouza A
    Cell Transplant; 2008; 17(8):977-86. PubMed ID: 19069639
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Proliferation and chondrogenic differentiation of CD105-positive enriched rat synovium-derived mesenchymal stem cells in three-dimensional porous scaffolds.
    Qi J; Chen A; You H; Li K; Zhang D; Guo F
    Biomed Mater; 2011 Feb; 6(1):015006. PubMed ID: 21205995
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Macroporous elastic cryogels based on platelet lysate and oxidized dextran as tissue engineering scaffold: In vitro and in vivo evaluations.
    Şeker Ş; Elçin AE; Elçin YM
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110703. PubMed ID: 32204017
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The osteogenic differentiation of adipose tissue-derived precursor cells in a 3D scaffold/matrix environment.
    Leong DT; Nah WK; Gupta A; Hutmacher DW; Woodruff MA
    Curr Drug Discov Technol; 2008 Dec; 5(4):319-27. PubMed ID: 19075612
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Electrospinning of highly porous yet mechanically functional microfibrillar scaffolds at the human scale for ligament and tendon tissue engineering.
    Olvera D; Schipani R; Sathy BN; Kelly DJ
    Biomed Mater; 2019 Apr; 14(3):035016. PubMed ID: 30844776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.