BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 26413805)

  • 21. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition.
    Chen Z; Wang Y; Xia D; Jiang X; Fu D; Shen L; Wang H; Li QB
    J Hazard Mater; 2016 Jul; 311():20-9. PubMed ID: 26954472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination.
    Niazi NK; Bibi I; Shahid M; Ok YS; Burton ED; Wang H; Shaheen SM; Rinklebe J; Lüttge A
    Environ Pollut; 2018 Jan; 232():31-41. PubMed ID: 28966026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.
    Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H
    PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars.
    Mohan D; Singh P; Sarswat A; Steele PH; Pittman CU
    J Colloid Interface Sci; 2015 Jun; 448():238-50. PubMed ID: 25744855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study.
    Gupta VK; Rastogi A
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):170-8. PubMed ID: 18321684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of biochar from Enteromorpha prolifera and its use for the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution.
    Qiao K; Tian W; Bai J; Dong J; Zhao J; Gong X; Liu S
    Ecotoxicol Environ Saf; 2018 Mar; 149():80-87. PubMed ID: 29154138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash.
    Zhang K; Zhang D; Zhang K
    Water Sci Technol; 2016; 73(8):1954-62. PubMed ID: 27120650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass.
    Son EB; Poo KM; Chang JS; Chae KJ
    Sci Total Environ; 2018 Feb; 615():161-168. PubMed ID: 28964991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox and catalytic properties of biochar-coated zero-valent iron for the removal of nitro explosives and halogenated phenols.
    Oh SY; Seo YD; Ryu KS; Park DJ; Lee SH
    Environ Sci Process Impacts; 2017 May; 19(5):711-719. PubMed ID: 28394378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of water washing pretreatment on property and adsorption capacity of macroalgae-derived biochar.
    Boakye P; Tran HN; Lee DS; Woo SH
    J Environ Manage; 2019 Mar; 233():165-174. PubMed ID: 30579004
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars.
    Rajapaksha AU; Vithanage M; Zhang M; Ahmad M; Mohan D; Chang SX; Ok YS
    Bioresour Technol; 2014 Aug; 166():303-8. PubMed ID: 24926603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent developments on algal biochar production and characterization.
    Yu KL; Lau BF; Show PL; Ong HC; Ling TC; Chen WH; Ng EP; Chang JS
    Bioresour Technol; 2017 Dec; 246():2-11. PubMed ID: 28844690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of nitrate onto biochar derived from agricultural residuals.
    Zhao H; Xue Y; Long L; Hu X
    Water Sci Technol; 2018 Jan; 77(1-2):548-554. PubMed ID: 29377839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling.
    Morrison SJ; Metzler DR; Dwyer BP
    J Contam Hydrol; 2002 May; 56(1-2):99-116. PubMed ID: 12076025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation.
    Saunders RJ; Paul NA; Hu Y; de Nys R
    PLoS One; 2012; 7(5):e36470. PubMed ID: 22590550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arsenic adsorption by different Fe-enriched biochars conditioned with sulfuric acid.
    Xu M; Qin Y; Huang Q; Beiyuan J; Li H; Chen W; Wang X; Wang S; Yang F; Yuan W; Wang H
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):16398-16407. PubMed ID: 36181599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars.
    Mayakaduwa SS; Herath I; Ok YS; Mohan D; Vithanage M
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22755-22763. PubMed ID: 27553000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrated comparisons of thorium(IV) adsorption onto alkali-treated duckweed biomass and duckweed-derived hydrothermal and pyrolytic biochar.
    Chen T; Zhang N; Xu Z; Hu X; Ding Z
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2523-2530. PubMed ID: 30471065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior.
    Dieguez-Alonso A; Anca-Couce A; Frišták V; Moreno-Jiménez E; Bacher M; Bucheli TD; Cimò G; Conte P; Hagemann N; Haller A; Hilber I; Husson O; Kammann CI; Kienzl N; Leifeld J; Rosenau T; Soja G; Schmidt HP
    Chemosphere; 2019 Jan; 214():743-753. PubMed ID: 30293028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-pyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar - A review.
    Fakayode OA; Aboagarib EAA; Zhou C; Ma H
    Bioresour Technol; 2020 Feb; 297():122408. PubMed ID: 31767426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.