BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 26413998)

  • 1. Surfactant Effects on Particle Generation in Antibody Formulations in Pre-filled Syringes.
    Gerhardt A; Mcumber AC; Nguyen BH; Lewus R; Schwartz DK; Carpenter JF; Randolph TW
    J Pharm Sci; 2015 Dec; 104(12):4056-4064. PubMed ID: 26413998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein aggregation and particle formation in prefilled glass syringes.
    Gerhardt A; Mcgraw NR; Schwartz DK; Bee JS; Carpenter JF; Randolph TW
    J Pharm Sci; 2014 Jun; 103(6):1601-12. PubMed ID: 24729310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the siliconization method on particle generation in a monoclonal antibody formulation in pre-filled syringes.
    Gerhardt A; Nguyen BH; Lewus R; Carpenter JF; Randolph TW
    J Pharm Sci; 2015 May; 104(5):1601-9. PubMed ID: 25740412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelation of a monoclonal antibody at the silicone oil-water interface and subsequent rupture of the interfacial gel results in aggregation and particle formation.
    Mehta SB; Lewus R; Bee JS; Randolph TW; Carpenter JF
    J Pharm Sci; 2015 Apr; 104(4):1282-90. PubMed ID: 25639229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IgG1 aggregation and particle formation induced by silicone-water interfaces on siliconized borosilicate glass beads: a model for siliconized primary containers.
    Basu P; Krishnan S; Thirumangalathu R; Randolph TW; Carpenter JF
    J Pharm Sci; 2013 Mar; 102(3):852-65. PubMed ID: 23280943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of aggregate and silicone-oil counts in pre-filled siliconized syringes: An orthogonal study characterising the entire subvisible size range.
    Shah M; Rattray Z; Day K; Uddin S; Curtis R; van der Walle CF; Pluen A
    Int J Pharm; 2017 Mar; 519(1-2):58-66. PubMed ID: 28089934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the effect of syringe surfaces on protein formulations.
    Majumdar S; Ford BM; Mar KD; Sullivan VJ; Ulrich RG; D'souza AJ
    J Pharm Sci; 2011 Jul; 100(7):2563-73. PubMed ID: 21319164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption and Aggregation of Monoclonal Antibodies at Silicone Oil-Water Interfaces.
    Kannan A; Shieh IC; Negulescu PG; Chandran Suja V; Fuller GG
    Mol Pharm; 2021 Apr; 18(4):1656-1665. PubMed ID: 33656340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Albinterferon α2b adsorption to silicone oil-water interfaces: effects on protein conformation, aggregation, and subvisible particle formation.
    Basu P; Blake-Haskins AW; O'Berry KB; Randolph TW; Carpenter JF
    J Pharm Sci; 2014 Feb; 103(2):427-36. PubMed ID: 24382812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Subvisible Particles in Biotherapeutic Prefilled Syringes: The Role of Polysorbate and Protein on the Formation of Silicone Oil and Protein Subvisible Particles After Drop Shock.
    Jiao N; Barnett GV; Christian TR; Narhi LO; Joh NH; Joubert MK; Cao S
    J Pharm Sci; 2020 Jan; 109(1):640-645. PubMed ID: 31689431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of Tween(®) 20 on silicone oil-fusion protein interactions.
    Dixit N; Maloney KM; Kalonia DS
    Int J Pharm; 2012 Jun; 429(1-2):158-67. PubMed ID: 22429889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Friability Testing as a New Stress-Stability Assay for Biopharmaceuticals.
    Torisu T; Maruno T; Yoneda S; Hamaji Y; Honda S; Ohkubo T; Uchiyama S
    J Pharm Sci; 2017 Oct; 106(10):2966-2978. PubMed ID: 28603019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competitive Adsorption of a Monoclonal Antibody and Nonionic Surfactant at the PDMS/Water Interface.
    Shen K; Hu X; Li Z; Liao M; Zhuang Z; Ruane S; Wang Z; Li P; Micciulla S; Kasinathan N; Kalonia C; Lu JR
    Mol Pharm; 2023 May; 20(5):2502-2512. PubMed ID: 37012645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle Characterization for a Protein Drug Product Stored in Pre-Filled Syringes Using Micro-Flow Imaging, Archimedes, and Quartz Crystal Microbalance with Dissipation.
    Zheng S; Puri A; Li J; Jaiswal A; Adams M
    AAPS J; 2017 Jan; 19(1):110-116. PubMed ID: 27620008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-linked silicone coating: a novel prefilled syringe technology that reduces subvisible particles and maintains compatibility with biologics.
    Depaz RA; Chevolleau T; Jouffray S; Narwal R; Dimitrova MN
    J Pharm Sci; 2014 May; 103(5):1384-93. PubMed ID: 24643773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Surface Adsorption Phenomena for Conventional and Novel Surfactants Correlates with Changes in Interfacial mAb Stabilization.
    Kanthe AD; Carnovale MR; Katz JS; Jordan S; Krause ME; Zheng S; Ilott A; Ying W; Bu W; Bera MK; Lin B; Maldarelli C; Tu RS
    Mol Pharm; 2022 Sep; 19(9):3100-3113. PubMed ID: 35882380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic strength affects tertiary structure and aggregation propensity of a monoclonal antibody adsorbed to silicone oil-water interfaces.
    Gerhardt A; Bonam K; Bee JS; Carpenter JF; Randolph TW
    J Pharm Sci; 2013 Feb; 102(2):429-40. PubMed ID: 23212809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal Instability Fosters Agglomeration of Subvisible Particles Created by Rupture of Gels of a Monoclonal Antibody Formed at Silicone Oil-Water Interfaces.
    Mehta SB; Carpenter JF; Randolph TW
    J Pharm Sci; 2016 Aug; 105(8):2338-48. PubMed ID: 27422087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant Impact on Interfacial Protein Aggregation and Utilization of Surface Tension to Predict Surfactant Requirements for Biological Formulations.
    Vargo KB; Stahl P; Hwang B; Hwang E; Giordano D; Randolph P; Celentano C; Hepler R; Amin K
    Mol Pharm; 2021 Jan; 18(1):148-157. PubMed ID: 33253579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Silicone Oil on Free Fatty Acid Particle Formation due to Polysorbate 20 Degradation.
    Fish R; Lin J; Doshi N
    Pharm Res; 2020 Oct; 37(11):216. PubMed ID: 33029664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.