These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 26414179)

  • 1. Redesigning Recombinase Specificity for Safe Harbor Sites in the Human Genome.
    Wallen MC; Gaj T; Barbas CF
    PLoS One; 2015; 10(9):e0139123. PubMed ID: 26414179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants.
    Sirk SJ; Gaj T; Jonsson A; Mercer AC; Barbas CF
    Nucleic Acids Res; 2014 Apr; 42(7):4755-66. PubMed ID: 24452803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells.
    Gaj T; Mercer AC; Sirk SJ; Smith HL; Barbas CF
    Nucleic Acids Res; 2013 Apr; 41(6):3937-46. PubMed ID: 23393187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign.
    Gaj T; Sirk SJ; Tingle RD; Mercer AC; Wallen MC; Barbas CF
    J Am Chem Soc; 2014 Apr; 136(13):5047-56. PubMed ID: 24611715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome engineering with custom recombinases.
    Gaj T; Barbas CF
    Methods Enzymol; 2014; 546():79-91. PubMed ID: 25398336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of programmable zinc finger-recombinases with activity in human cells.
    Gordley RM; Smith JD; Gräslund T; Barbas CF
    J Mol Biol; 2007 Mar; 367(3):802-13. PubMed ID: 17289078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chimeric TALE recombinases with programmable DNA sequence specificity.
    Mercer AC; Gaj T; Fuller RP; Barbas CF
    Nucleic Acids Res; 2012 Nov; 40(21):11163-72. PubMed ID: 23019222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-guided reprogramming of serine recombinase DNA sequence specificity.
    Gaj T; Mercer AC; Gersbach CA; Gordley RM; Barbas CF
    Proc Natl Acad Sci U S A; 2011 Jan; 108(2):498-503. PubMed ID: 21187418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc finger recombinases with adaptable DNA sequence specificity.
    Proudfoot C; McPherson AL; Kolb AF; Stark WM
    PLoS One; 2011 Apr; 6(4):e19537. PubMed ID: 21559340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution of recombinase specificity by split gene reassembly.
    Gersbach CA; Gaj T; Gordley RM; Barbas CF
    Nucleic Acids Res; 2010 Jul; 38(12):4198-206. PubMed ID: 20194120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed Evolution of Targeted Recombinases for Genome Engineering.
    Sirk SJ
    Methods Mol Biol; 2018; 1867():89-102. PubMed ID: 30155817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome targeting by hybrid Flp-TAL recombinases.
    Voziyanova E; Li F; Shah R; Voziyanov Y
    Sci Rep; 2020 Oct; 10(1):17479. PubMed ID: 33060660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chimeric recombinases with designed DNA sequence recognition.
    Akopian A; He J; Boocock MR; Stark WM
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8688-91. PubMed ID: 12837939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serine recombinases as tools for genome engineering.
    Brown WR; Lee NC; Xu Z; Smith MC
    Methods; 2011 Apr; 53(4):372-9. PubMed ID: 21195181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc-finger recombinase activities in vitro.
    Prorocic MM; Wenlong D; Olorunniji FJ; Akopian A; Schloetel JG; Hannigan A; McPherson AL; Stark WM
    Nucleic Acids Res; 2011 Nov; 39(21):9316-28. PubMed ID: 21849325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionality of the beta/six site-specific recombination system in tobacco and Arabidopsis: a novel tool for genetic engineering of plant genomes.
    Grønlund JT; Stemmer C; Lichota J; Merkle T; Grasser KD
    Plant Mol Biol; 2007 Mar; 63(4):545-56. PubMed ID: 17131098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large serine recombinase domain structure and attachment site binding.
    Van Duyne GD; Rutherford K
    Crit Rev Biochem Mol Biol; 2013; 48(5):476-91. PubMed ID: 23980849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of programmable integrases.
    Gordley RM; Gersbach CA; Barbas CF
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5053-8. PubMed ID: 19282480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system.
    Karimova M; Abi-Ghanem J; Berger N; Surendranath V; Pisabarro MT; Buchholz F
    Nucleic Acids Res; 2013 Jan; 41(2):e37. PubMed ID: 23143104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of a target site-specific recombinase by a combined evolution- and structure-guided approach.
    Abi-Ghanem J; Chusainow J; Karimova M; Spiegel C; Hofmann-Sieber H; Hauber J; Buchholz F; Pisabarro MT
    Nucleic Acids Res; 2013 Feb; 41(4):2394-403. PubMed ID: 23275541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.