These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 26414179)
21. Diversity in the serine recombinases. Smith MC; Thorpe HM Mol Microbiol; 2002 Apr; 44(2):299-307. PubMed ID: 11972771 [TBL] [Abstract][Full Text] [Related]
22. Efficient Genome Manipulation by Variants of Site-Specific Recombinases R and TD. Voziyanova E; Anderson RP; Shah R; Li F; Voziyanov Y J Mol Biol; 2016 Feb; 428(5 Pt B):990-1003. PubMed ID: 26555749 [TBL] [Abstract][Full Text] [Related]
23. Effects of DNA binding of the zinc finger and linkers for domain fusion on the catalytic activity of sequence-specific chimeric recombinases determined by a facile fluorescent system. Nomura W; Masuda A; Ohba K; Urabe A; Ito N; Ryo A; Yamamoto N; Tamamura H Biochemistry; 2012 Feb; 51(7):1510-7. PubMed ID: 22304662 [TBL] [Abstract][Full Text] [Related]
24. Site-specific DNA recombinases as instruments for genomic surgery. Akopian A; Marshall Stark W Adv Genet; 2005; 55():1-23. PubMed ID: 16291210 [TBL] [Abstract][Full Text] [Related]
25. The Serine Recombinases. Stark WM Microbiol Spectr; 2014 Dec; 2(6):. PubMed ID: 26104451 [TBL] [Abstract][Full Text] [Related]
26. Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Gersbach CA; Gaj T; Gordley RM; Mercer AC; Barbas CF Nucleic Acids Res; 2011 Sep; 39(17):7868-78. PubMed ID: 21653554 [TBL] [Abstract][Full Text] [Related]
27. Catalysis of site-specific recombination by Tn3 resolvase. Olorunniji FJ; Stark WM Biochem Soc Trans; 2010 Apr; 38(2):417-21. PubMed ID: 20298194 [TBL] [Abstract][Full Text] [Related]
28. Identification of the structural and functional domains of the large serine recombinase TnpX from Clostridium perfringens. Lucet IS; Tynan FE; Adams V; Rossjohn J; Lyras D; Rood JI J Biol Chem; 2005 Jan; 280(4):2503-11. PubMed ID: 15542858 [TBL] [Abstract][Full Text] [Related]
29. SeLOX--a locus of recombination site search tool for the detection and directed evolution of site-specific recombination systems. Surendranath V; Chusainow J; Hauber J; Buchholz F; Habermann BH Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W293-8. PubMed ID: 20529878 [TBL] [Abstract][Full Text] [Related]
30. Activation of recombinases at specific DNA loci by zinc-finger domain insertions. Mukhametzyanova L; Schmitt LT; Torres-Rivera J; Rojo-Romanos T; Lansing F; Paszkowski-Rogacz M; Hollak H; Brux M; Augsburg M; Schneider PM; Buchholz F Nat Biotechnol; 2024 Jan; ():. PubMed ID: 38297187 [TBL] [Abstract][Full Text] [Related]
31. Synapsis in phage Bxb1 integration: selection mechanism for the correct pair of recombination sites. Ghosh P; Pannunzio NR; Hatfull GF J Mol Biol; 2005 Jun; 349(2):331-48. PubMed ID: 15890199 [TBL] [Abstract][Full Text] [Related]
32. Functional analysis of the C-terminal domains of the site-specific recombinases XerC and XerD. Ferreira H; Butler-Cole B; Burgin A; Baker R; Sherratt DJ; Arciszewska LK J Mol Biol; 2003 Jun; 330(1):15-27. PubMed ID: 12818199 [TBL] [Abstract][Full Text] [Related]
33. A heterodimer of evolved designer-recombinases precisely excises a human genomic DNA locus. Lansing F; Paszkowski-Rogacz M; Schmitt LT; Schneider PM; Rojo Romanos T; Sonntag J; Buchholz F Nucleic Acids Res; 2020 Jan; 48(1):472-485. PubMed ID: 31745551 [TBL] [Abstract][Full Text] [Related]
34. The resolvase encoded by Xanthomonas campestris transposable element ISXc5 constitutes a new subfamily closely related to DNA invertases. Liu CC; Hühne R; Tu J; Lorbach E; Dröge P Genes Cells; 1998 Apr; 3(4):221-33. PubMed ID: 9663657 [TBL] [Abstract][Full Text] [Related]
35. HUH site-specific recombinases for targeted modification of the human genome. González-Prieto C; Agúndez L; Linden RM; Llosa M Trends Biotechnol; 2013 May; 31(5):305-12. PubMed ID: 23545167 [TBL] [Abstract][Full Text] [Related]
36. Genetic surgery in fungi: employing site-specific recombinases for genome manipulation. Krappmann S Appl Microbiol Biotechnol; 2014 Mar; 98(5):1971-82. PubMed ID: 24407452 [TBL] [Abstract][Full Text] [Related]
37. DNA sequence heterogeneity in Fim tyrosine-integrase recombinase-binding elements and functional motif asymmetries determine the directionality of the fim genetic switch in Escherichia coli K-12. McCusker MP; Turner EC; Dorman CJ Mol Microbiol; 2008 Jan; 67(1):171-87. PubMed ID: 18034794 [TBL] [Abstract][Full Text] [Related]
38. Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Gaj T; Sirk SJ; Barbas CF Biotechnol Bioeng; 2014 Jan; 111(1):1-15. PubMed ID: 23982993 [TBL] [Abstract][Full Text] [Related]
39. Resolvase-like serine recombinase mediates integration/excision in the bacteriophage φRSM. Askora A; Kawasaki T; Fujie M; Yamada T J Biosci Bioeng; 2011 Feb; 111(2):109-16. PubMed ID: 21035394 [TBL] [Abstract][Full Text] [Related]
40. The carboxy-terminal αN helix of the archaeal XerA tyrosine recombinase is a molecular switch to control site-specific recombination. Serre MC; El Arnaout T; Brooks MA; Durand D; Lisboa J; Lazar N; Raynal B; van Tilbeurgh H; Quevillon-Cheruel S PLoS One; 2013; 8(5):e63010. PubMed ID: 23667562 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]