These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 26414182)

  • 1. An Approach to Improve the Performance of PM Forecasters.
    de Mattos Neto PS; Cavalcanti GD; Madeiro F; Ferreira TA
    PLoS One; 2015; 10(9):e0138507. PubMed ID: 26414182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intercomparison of air quality data using principal component analysis, and forecasting of PM₁₀ and PM₂.₅ concentrations using artificial neural networks, in Thessaloniki and Helsinki.
    Voukantsis D; Karatzas K; Kukkonen J; Räsänen T; Karppinen A; Kolehmainen M
    Sci Total Environ; 2011 Mar; 409(7):1266-76. PubMed ID: 21276603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human-model hybrid Korean air quality forecasting system.
    Chang LS; Cho A; Park H; Nam K; Kim D; Hong JH; Song CK
    J Air Waste Manag Assoc; 2016 Sep; 66(9):896-911. PubMed ID: 27450767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel hybrid forecasting model for PM₁₀ and SO₂ daily concentrations.
    Wang P; Liu Y; Qin Z; Zhang G
    Sci Total Environ; 2015 Feb; 505():1202-12. PubMed ID: 25461118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki.
    Vlachogianni A; Kassomenos P; Karppinen A; Karakitsios S; Kukkonen J
    Sci Total Environ; 2011 Mar; 409(8):1559-71. PubMed ID: 21277004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving artificial neural network model predictions of daily average PM10 concentrations by applying principle component analysis and implementing seasonal models.
    Taşpınar F
    J Air Waste Manag Assoc; 2015 Jul; 65(7):800-9. PubMed ID: 26079553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forecasting PM10 in metropolitan areas: Efficacy of neural networks.
    Fernando HJ; Mammarella MC; Grandoni G; Fedele P; Di Marco R; Dimitrova R; Hyde P
    Environ Pollut; 2012 Apr; 163():62-7. PubMed ID: 22325432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correcting and combining time series forecasters.
    Firmino PR; de Mattos Neto PS; Ferreira TA
    Neural Netw; 2014 Feb; 50():1-11. PubMed ID: 24239986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the modeling of spatiotemporal variations in ambient air pollution within the land use regression framework: Estimation of PM10 concentrations on a daily basis.
    Alam MS; McNabola A
    J Air Waste Manag Assoc; 2015 May; 65(5):628-40. PubMed ID: 25947321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Daily PM
    Sun W; Sun J
    J Environ Manage; 2017 Mar; 188():144-152. PubMed ID: 27988447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid model for PM₂.₅ forecasting based on ensemble empirical mode decomposition and a general regression neural network.
    Zhou Q; Jiang H; Wang J; Zhou J
    Sci Total Environ; 2014 Oct; 496():264-274. PubMed ID: 25089688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new approach for combining information available from multiple particulate air pollution monitors.
    Roberts S; Martin M
    J Expo Sci Environ Epidemiol; 2008 Jan; 18(1):88-94. PubMed ID: 17684530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of hybrid genetic-algorithm-based neural networks using regression trees for modeling air quality inside a public transportation bus.
    Kadiyala A; Kaur D; Kumar A
    J Air Waste Manag Assoc; 2013 Feb; 63(2):205-18. PubMed ID: 23472304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers.
    Chellali MR; Abderrahim H; Hamou A; Nebatti A; Janovec J
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14008-17. PubMed ID: 27040548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan, China.
    Zhang H; Zhang S; Wang P; Qin Y; Wang H
    J Air Waste Manag Assoc; 2017 Jul; 67(7):776-788. PubMed ID: 28278031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LaSVM-based big data learning system for dynamic prediction of air pollution in Tehran.
    Ghaemi Z; Alimohammadi A; Farnaghi M
    Environ Monit Assess; 2018 Apr; 190(5):300. PubMed ID: 29679160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.