These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26414194)

  • 1. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode.
    Davids PS; Jarecki RL; Starbuck A; Burckel DB; Kadlec EA; Ribaudo T; Shaner EA; Peters DW
    Nat Nanotechnol; 2015 Dec; 10(12):1033-8. PubMed ID: 26414194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bowtie Nanoantenna Coupled Metal-Oxide-Silicon (p-Doped) Diode for 28.3 THz IR Rectification.
    Islam NA; Choi S
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions.
    Parzefall M; Bharadwaj P; Jain A; Taniguchi T; Watanabe K; Novotny L
    Nat Nanotechnol; 2015 Dec; 10(12):1058-63. PubMed ID: 26367108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A carbon nanotube optical rectenna.
    Sharma A; Singh V; Bougher TL; Cola BA
    Nat Nanotechnol; 2015 Dec; 10(12):1027-32. PubMed ID: 26414198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced 400-600 nm photoresponsivity of metal-oxide-semiconductor diodes with multi-stack germanium quantum dots.
    Tzeng SS; Li PW
    Nanotechnology; 2008 Jun; 19(23):235203. PubMed ID: 21825783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavily Doped Semiconductor Colloidal Nanocrystals as Ultra-Broadband Switches for Near-Infrared and Mid-Infrared Pulse Lasers.
    Wei R; Tian X; Luo H; Liu M; Yang Z; Luo Z; Zhu H; Guo H; Li J; Qiu J
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40416-40423. PubMed ID: 31592628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directional control of infrared antenna-coupled tunnel diodes.
    Slovick BA; Bean JA; Krenz PM; Boreman GD
    Opt Express; 2010 Sep; 18(20):20960-7. PubMed ID: 20940991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale plasmonic phenomena in CVD-grown MoS(2) monolayer revealed by ultra-broadband synchrotron radiation based nano-FTIR spectroscopy and near-field microscopy.
    Patoka P; Ulrich G; Nguyen AE; Bartels L; Dowben PA; Turkowski V; Rahman TS; Hermann P; Kästner B; Hoehl A; Ulm G; Rühl E
    Opt Express; 2016 Jan; 24(2):1154-64. PubMed ID: 26832499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient metallic optical incouplers for quantum well infrared photodetectors.
    Liu L; Chen Y; Huang Z; Du W; Zhan P; Wang Z
    Sci Rep; 2016 Jul; 6():30414. PubMed ID: 27456691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction.
    Hillenbrand R
    Ultramicroscopy; 2004 Aug; 100(3-4):421-7. PubMed ID: 15231334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal radiation scanning tunnelling microscopy.
    De Wilde Y; Formanek F; Carminati R; Gralak B; Lemoine PA; Joulain K; Mulet JP; Chen Y; Greffet JJ
    Nature; 2006 Dec; 444(7120):740-3. PubMed ID: 17151664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
    Olmon RL; Raschke MB
    Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size tunable Ge quantum dots for near-ultraviolet to near-infrared photosensing with high figures of merit.
    Chien CY; Lai WT; Chang YJ; Wang CC; Kuo MH; Li PW
    Nanoscale; 2014 May; 6(10):5303-8. PubMed ID: 24699699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum cascade laser.
    Faist J; Capasso F; Sivco DL; Sirtori C; Hutchinson AL; Cho AY
    Science; 1994 Apr; 264(5158):553-6. PubMed ID: 17732739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning optical responses of metallic dipole nanoantenna using graphene.
    Ren X; Sha WE; Choy WC
    Opt Express; 2013 Dec; 21(26):31824-9. PubMed ID: 24514777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical field enhancement by strong plasmon interaction in graphene nanostructures.
    Thongrattanasiri S; García de Abajo FJ
    Phys Rev Lett; 2013 May; 110(18):187401. PubMed ID: 23683241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Thermal Diode Based on Nanoscale Thermal Radiation.
    Fiorino A; Thompson D; Zhu L; Mittapally R; Biehs SA; Bezencenet O; El-Bondry N; Bansropun S; Ben-Abdallah P; Meyhofer E; Reddy P
    ACS Nano; 2018 Jun; 12(6):5774-5779. PubMed ID: 29790344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting infrared energy transfer in 3D nanoporous gold antennas.
    Garoli D; Calandrini E; Bozzola A; Ortolani M; Cattarin S; Barison S; Toma A; De Angelis F
    Nanoscale; 2017 Jan; 9(2):915-922. PubMed ID: 28000833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon-enhanced light matter interaction at the nanometre scale.
    Hillenbrand R; Taubner T; Keilmann F
    Nature; 2002 Jul; 418(6894):159-62. PubMed ID: 12110883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.