These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 26414356)

  • 1. Visual Stimuli Evoked Action Potentials Trigger Rapidly Propagating Dendritic Calcium Transients in the Frog Optic Tectum Layer 6 Neurons.
    Svirskis G; Baranauskas G; Svirskiene N; Tkatch T
    PLoS One; 2015; 10(9):e0139472. PubMed ID: 26414356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single retinal ganglion cell evokes the activation of L-type Ca(2+)-mediated slow inward current in frog tectal pear-shaped neurons.
    Baginskas A; Kuras A
    Neurosci Res; 2008 Apr; 60(4):412-21. PubMed ID: 18243388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An eye-tectum preparation allowing routine whole-cell recordings of neuronal responses to visual stimuli in frog.
    Svirskis G; Svirskiene N; Gutmaniene N
    J Neurosci Methods; 2009 May; 180(1):22-8. PubMed ID: 19427525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presynaptic calcium dynamics at the frog retinotectal synapse.
    Feller MB; Delaney KR; Tank DW
    J Neurophysiol; 1996 Jul; 76(1):381-400. PubMed ID: 8836232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendritic Ih ensures high-fidelity dendritic spike responses of motion-sensitive neurons in rat superior colliculus.
    Endo T; Tarusawa E; Notomi T; Kaneda K; Hirabayashi M; Shigemoto R; Isa T
    J Neurophysiol; 2008 May; 99(5):2066-76. PubMed ID: 18216232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 20Hz membrane potential oscillations are driven by synaptic inputs in collision-detecting neurons in the frog optic tectum.
    Baranauskas G; Svirskiene N; Svirskis G
    Neurosci Lett; 2012 Oct; 528(2):196-200. PubMed ID: 22995176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suprathreshold excitation of frog tectal neurons by short spike trains of single retinal ganglion cell.
    Kuras A; Baginskas A; Batuleviciene V
    Exp Brain Res; 2004 Dec; 159(4):509-18. PubMed ID: 15221171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active Dendritic Properties and Local Inhibitory Input Enable Selectivity for Object Motion in Mouse Superior Colliculus Neurons.
    Gale SD; Murphy GJ
    J Neurosci; 2016 Aug; 36(35):9111-23. PubMed ID: 27581453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular and current source density analyses of somatosensory input to the optic tectum of the frog.
    Tsurudome K; Li X; Matsumoto N
    Brain Res; 2005 Dec; 1064(1-2):32-41. PubMed ID: 16289401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sources of electrical transients in tectal neuropil of the frog, Rana pipiens.
    Grant AC; Lettvin JY
    Brain Res; 1991 Sep; 560(1-2):106-21. PubMed ID: 1760719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal profile of synaptic activation produced by the electrical and visual stimulation of retinal inputs to the optic tectum: a current source density analysis in the pigeon (Columba livia).
    Letelier JC; Mpodozis J; Marin G; Morales D; Rozas C; Madrid C; Velasco M
    Eur J Neurosci; 2000 Jan; 12(1):47-57. PubMed ID: 10651859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated GABA synaptic input and L-type calcium channels form functional microdomains in hypothalamic gonadotropin-releasing hormone neurons.
    Hemond PJ; O'Boyle MP; Roberts CB; Delgado-Reyes A; Hemond Z; Suter KJ
    J Neurosci; 2012 Jun; 32(26):8756-66. PubMed ID: 22745478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-type Ca2+ current in frog tectal recurrent neurons determines the NMDA receptor activation on efferent neuron.
    Baginskas A; Kuras A
    Exp Brain Res; 2009 Mar; 193(4):509-17. PubMed ID: 19034437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium transients in subcompartments of the leech Retzius neuron as induced by single action potentials.
    Beck A; Lohr C; Deitmer JW
    J Neurobiol; 2001 Jul; 48(1):1-18. PubMed ID: 11391646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of periventricular neurons in retinotectal transmission in the optic tectum.
    Kinoshita M; Ito E
    Prog Neurobiol; 2006 Jun; 79(2):112-21. PubMed ID: 16901616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic calcium encodes striatal neuron output during up-states.
    Kerr JN; Plenz D
    J Neurosci; 2002 Mar; 22(5):1499-512. PubMed ID: 11880480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial profile of back-propagating action potential-evoked Ca2+ transients in basal dendrites.
    Cho KH; Kim MJ; Yoon SH; Hahn SJ; Jo YH; Kim MS; Rhie DJ
    Neuroreport; 2006 Feb; 17(2):131-4. PubMed ID: 16407758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential cholinergic modulation of Ca2+ transients evoked by backpropagating action potentials in apical and basal dendrites of cortical pyramidal neurons.
    Cho KH; Jang HJ; Lee EH; Yoon SH; Hahn SJ; Jo YH; Kim MS; Rhie DJ
    J Neurophysiol; 2008 Jun; 99(6):2833-43. PubMed ID: 18417635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey.
    Förster D; Helmbrecht TO; Mearns DS; Jordan L; Mokayes N; Baier H
    Elife; 2020 Oct; 9():. PubMed ID: 33044168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chattering and differential signal processing in identified motion-sensitive neurons of parallel visual pathways in the chick tectum.
    Luksch H; Karten HJ; Kleinfeld D; Wessel R
    J Neurosci; 2001 Aug; 21(16):6440-6. PubMed ID: 11487668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.