BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 26414436)

  • 1. Intestine-Specific Delivery of Hydrophobic Bioactives from Oxidized Starch Microspheres with an Enhanced Stability.
    Wang S; Chen Y; Liang H; Chen Y; Shi M; Wu J; Liu X; Li Z; Liu B; Yuan Q; Li Y
    J Agric Food Chem; 2015 Oct; 63(39):8669-75. PubMed ID: 26414436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-loading and intestine-specific delivery of multiple antioxidants in pH-responsive microspheres based on TEMPO-oxidized polysaccharides.
    Shi M; Bai J; Zhao L; Yu X; Liang J; Liu Y; Nord W; Li Y
    Carbohydr Polym; 2017 Feb; 157():858-865. PubMed ID: 27988000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Citric-acid modified banana starch nanoparticles as a novel vehicle for β-carotene delivery.
    Santoyo-Aleman D; Sanchez LT; Villa CC
    J Sci Food Agric; 2019 Nov; 99(14):6392-6399. PubMed ID: 31283024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A stable high internal phase emulsion fabricated with OSA-modified starch: an improvement in β-carotene stability and bioaccessibility.
    Yan C; McClements DJ; Zou L; Liu W
    Food Funct; 2019 Sep; 10(9):5446-5460. PubMed ID: 31403644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of octenylsuccinylated starches: effects on emulsions containing β-carotene.
    Sweedman MC; Hasjim J; Schäfer C; Gilbert RG
    Carbohydr Polym; 2014 Nov; 112():85-93. PubMed ID: 25129720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving solubility and stability of β-carotene by microencapsulation in soluble complexes formed with whey protein and OSA-modified starch.
    Lin Q; Wu D; Singh H; Ye A
    Food Chem; 2021 Aug; 352():129267. PubMed ID: 33691207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encapsulation and stabilization of β-carotene by amylose inclusion complexes.
    Kong L; Bhosale R; Ziegler GR
    Food Res Int; 2018 Mar; 105():446-452. PubMed ID: 29433235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, characterization and digestibility of β-carotene-loaded emulsion system stabilized by whey protein with chitosan and potato starch addition.
    Hu Y; Wang L; Julian McClements D
    Food Chem; 2024 May; 440():138131. PubMed ID: 38103502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative performance evaluation of chitosan based polymeric microspheres and nanoparticles as delivery system for bacterial β-carotene derived from Planococcus sp. TRC1.
    Majumdar S; Mandal T; Dasgupta Mandal D
    Int J Biol Macromol; 2022 Jan; 195():384-397. PubMed ID: 34863970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Stability and in vitro release properties of β-carotene in emulsions stabilized by Ulva fasciata polysaccharide.
    Shao P; Qiu Q; Xiao J; Zhu Y; Sun P
    Int J Biol Macromol; 2017 Sep; 102():225-231. PubMed ID: 28385525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aminated polysaccharide microspheres as DNA delivery systems.
    Constantin M; Fundueanu G; Cortesi R; Esposito E; Nastruzzi C
    Drug Deliv; 2003; 10(3):139-49. PubMed ID: 12944134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intelligent multicompartmental system based on thermo-sensitive starch microspheres for temperature-controlled release of drugs.
    Fundueanu G; Constantin M; Ascenzi P; Simionescu BC
    Biomed Microdevices; 2010 Aug; 12(4):693-704. PubMed ID: 20414809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Preparation and stability of β-carotene loaded using mesoporous silica nanoparticles as carriers system].
    Liu J; Ren ZH; Wang HY; Jin XH
    Zhongguo Zhong Yao Za Zhi; 2015 Sep; 40(18):3579-84. PubMed ID: 26983203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches.
    Liang R; Shoemaker CF; Yang X; Zhong F; Huang Q
    J Agric Food Chem; 2013 Feb; 61(6):1249-57. PubMed ID: 23331094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability.
    Luo X; Zhou Y; Bai L; Liu F; Deng Y; McClements DJ
    J Colloid Interface Sci; 2017 Mar; 490():328-335. PubMed ID: 27914331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyethyl starch-based polymers for the controlled release of biomacromolecules from hydrogel microspheres.
    Wöhl-Bruhn S; Bertz A; Harling S; Menzel H; Bunjes H
    Eur J Pharm Biopharm; 2012 Aug; 81(3):573-81. PubMed ID: 22579731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assam Bora rice starch based biocompatible mucoadhesive microsphere for targeted delivery of 5-fluorouracil in colorectal cancer.
    Ahmad MZ; Akhter S; Anwar M; Ahmad FJ
    Mol Pharm; 2012 Nov; 9(11):2986-94. PubMed ID: 22994847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability.
    Chen L; Bai G; Yang R; Zang J; Zhou T; Zhao G
    Food Chem; 2014 Apr; 149():307-12. PubMed ID: 24295711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gastrointestinal fate and antioxidation of β-carotene emulsion prepared by oat protein isolate-Pleurotus ostreatus β-glucan conjugate.
    Zhong L; Ma N; Wu Y; Zhao L; Ma G; Pei F; Hu Q
    Carbohydr Polym; 2019 Oct; 221():10-20. PubMed ID: 31227148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability and partitioning of β-carotene in whey protein emulsions during storage.
    Fahmi Wan Mohamad WA; McNaughton D; Buckow R; Augustin MA
    Food Funct; 2017 Nov; 8(11):3917-3925. PubMed ID: 28920995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.