These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 26414782)

  • 21. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyester copolymer scaffolds enhance expression of bone markers in osteoblast-like cells.
    Idris SB; Arvidson K; Plikk P; Ibrahim S; Finne-Wistrand A; Albertsson AC; Bolstad AI; Mustafa K
    J Biomed Mater Res A; 2010 Aug; 94(2):631-9. PubMed ID: 20205238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.
    Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone biomimetic microenvironment induces osteogenic differentiation of adipose tissue-derived mesenchymal stem cells.
    Lu Z; Roohani-Esfahani SI; Wang G; Zreiqat H
    Nanomedicine; 2012 May; 8(4):507-15. PubMed ID: 21839050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global gene expression profile of osteoblast-like cells grown on polyester copolymer scaffolds.
    Idris SB; Bolstad AI; Ibrahim SO; Dånmark S; Finne-Wistrand A; Albertsson AC; Arvidson K; Mustafa K
    Tissue Eng Part A; 2011 Nov; 17(21-22):2817-31. PubMed ID: 21905880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of the local delivery of alendronate on human adipose-derived stem cell-based bone regeneration.
    Wang CZ; Chen SM; Chen CH; Wang CK; Wang GJ; Chang JK; Ho ML
    Biomaterials; 2010 Nov; 31(33):8674-83. PubMed ID: 20719378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro concurrent endothelial and osteogenic commitment of adipose-derived stem cells and their genomical analyses through comparative genomic hybridization array: novel strategies to increase the successful engraftment of tissue-engineered bone grafts.
    Gardin C; Bressan E; Ferroni L; Nalesso E; Vindigni V; Stellini E; Pinton P; Sivolella S; Zavan B
    Stem Cells Dev; 2012 Mar; 21(5):767-77. PubMed ID: 21521013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S
    Biomaterials; 2012 Jan; 33(3):846-55. PubMed ID: 22048006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lentiviral-mediated gene transfer into human adipose-derived stem cells: role of NELL1 versus BMP2 in osteogenesis and adipogenesis in vitro.
    Liu Y; Chen C; He H; Wang D; E L; Liu Z; Liu H
    Acta Biochim Biophys Sin (Shanghai); 2012 Oct; 44(10):856-65. PubMed ID: 23017834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic fabrication of tissue-engineered bone substitutes based on derived cancellous bone scaffold in a spinner flask bioreactor system.
    Kedong S; Wenfang L; Yanxia Z; Hong W; Ze Y; Mayasari L; Tianqing L
    Appl Biochem Biotechnol; 2014 Oct; 174(4):1331-1343. PubMed ID: 25106897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of a thermoresponsive polycaprolactone scaffold for in vitro three-dimensional stem cell differentiation.
    Hruschka V; Saeed A; Slezak P; Cheikh Al Ghanami R; Feichtinger GA; Alexander C; Redl H; Shakesheff K; Wolbank S
    Tissue Eng Part A; 2015 Jan; 21(1-2):310-9. PubMed ID: 25167885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro human adipose-derived stromal/stem cells osteogenesis in akermanite:poly-ε-caprolactone scaffolds.
    Zanetti AS; McCandless GT; Chan JY; Gimble JM; Hayes DJ
    J Biomater Appl; 2014 Mar; 28(7):998-1007. PubMed ID: 23796629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering.
    Ye C; Hu P; Ma MX; Xiang Y; Liu RG; Shang XW
    Biomaterials; 2009 Sep; 30(26):4401-6. PubMed ID: 19481254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymethyl methacrylate does not adversely affect the osteogenic potential of human adipose stem cells or primary osteoblasts.
    Bastidas-Coral AP; Bakker AD; Kleverlaan CJ; Hogervorst JMA; Klein-Nulend J; Forouzanfar T
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1536-1545. PubMed ID: 31648414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.
    Wittenburg G; Flade V; Garbe AI; Lauer G; Labudde D
    Br J Oral Maxillofac Surg; 2014 May; 52(5):409-14. PubMed ID: 24685477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction of vascularized tissue-engineered bone with a double-cell sheet complex.
    Zhang H; Zhou Y; Zhang W; Wang K; Xu L; Ma H; Deng Y
    Acta Biomater; 2018 Sep; 77():212-227. PubMed ID: 30017924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix.
    Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT
    Spine J; 2006; 6(6):615-23. PubMed ID: 17088192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Different Porosities of Chitosan Can Influence the Osteogenic Differentiation Potential of Stem Cells.
    Ardeshirylajimi A; Delgoshaie M; Mirzaei S; Khojasteh A
    J Cell Biochem; 2018 Jan; 119(1):625-633. PubMed ID: 28618050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sustained delivery of BMP-2 and platelet-rich plasma-released growth factors contributes to osteogenesis of human adipose-derived stem cells.
    Chen L; Lu X; Li S; Sun Q; Li W; Song D
    Orthopedics; 2012 Sep; 35(9):e1402-9. PubMed ID: 22955409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrafibrillar-silicified collagen scaffolds enhance the osteogenic capacity of human dental pulp stem cells.
    Niu LN; Sun JQ; Li QH; Jiao K; Shen LJ; Wu D; Tay F; Chen JH
    J Dent; 2014 Jul; 42(7):839-49. PubMed ID: 24705068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.