BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 26415147)

  • 1. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Ding XR; Zhang YT; Liu J; Dai WX; Tsang HK
    IEEE Trans Biomed Eng; 2016 May; 63(5):964-972. PubMed ID: 26415147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoplethysmogram intensity ratio: A potential indicator for improving the accuracy of PTT-based cuffless blood pressure estimation.
    Ding XR; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():398-401. PubMed ID: 26736283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Gholamhosseini H; Baig M; Rastegar S; Lindén M
    Stud Health Technol Inform; 2018; 249():77-83. PubMed ID: 29866960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive cuffless blood pressure estimation using pulse transit time, Womersley number, and photoplethysmogram intensity ratio.
    Thambiraj G; Gandhi U; Devanand V; Mangalanathan U
    Physiol Meas; 2019 Jul; 40(7):075001. PubMed ID: 31051486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation.
    Wan-Hua Lin ; Hui Wang ; Samuel OW; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():738-741. PubMed ID: 29059978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis for the Influence of ABR Sensitivity on PTT-Based Cuff-Less Blood Pressure Estimation before and after Exercise.
    Xu Y; Ping P; Wang D; Zhang W
    J Healthc Eng; 2018; 2018():5396030. PubMed ID: 30402213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy.
    Lin WH; Wang H; Samuel OW; Liu G; Huang Z; Li G
    Physiol Meas; 2018 Feb; 39(2):025005. PubMed ID: 29319536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel dynamical approach in continuous cuffless blood pressure estimation based on ECG and PPG signals.
    Sharifi I; Goudarzi S; Khodabakhshi MB
    Artif Intell Med; 2019 Jun; 97():143-151. PubMed ID: 30587391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation.
    Ding X; Yan BP; Zhang YT; Liu J; Zhao N; Tsang HK
    Sci Rep; 2017 Sep; 7(1):11554. PubMed ID: 28912525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques.
    Miao F; Fu N; Zhang YT; Ding XR; Hong X; He Q; Li Y
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1730-1740. PubMed ID: 28463207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-source PPG-based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique.
    Nabeel PM; Jayaraj J; Mohanasankar S
    Physiol Meas; 2017 Nov; 38(12):2122-2140. PubMed ID: 29058686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bi-Modal Arterial Compliance Probe for Calibration-Free Cuffless Blood Pressure Estimation.
    P M N; Joseph J; Karthik S; Sivaprakasam M; Chenniappan M
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2392-2404. PubMed ID: 30130174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.
    Feng J; Huang Z; Zhou C; Ye X
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):403-413. PubMed ID: 29633173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous blood pressure measurement using the pulse transit time: Comparison to intra-arterial measurement.
    Patzak A; Mendoza Y; Gesche H; Konermann M
    Blood Press; 2015; 24(4):217-21. PubMed ID: 25857601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cuffless blood-pressure estimation method using a heart-rate variability-derived parameter.
    Chen Y; Shi S; Liu YK; Huang SL; Ma T
    Physiol Meas; 2018 Sep; 39(9):095002. PubMed ID: 30089101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Causal inference based cuffless blood pressure estimation: A pilot study.
    Liu L; Zhang YT; Wang W; Chen Y; Ding X
    Comput Biol Med; 2023 Jun; 159():106900. PubMed ID: 37087777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ballistocardiogram as Proximal Timing Reference for Pulse Transit Time Measurement: Potential for Cuffless Blood Pressure Monitoring.
    Kim CS; Carek AM; Mukkamala R; Inan OT; Hahn JO
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2657-64. PubMed ID: 26054058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms.
    Zuhair Sameen A; Jaafar R; Zahedi E; Kok Beng G
    J Med Eng Technol; 2022 Oct; 46(7):567-589. PubMed ID: 35801952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CiGNN: A Causality-Informed and Graph Neural Network Based Framework for Cuffless Continuous Blood Pressure Estimation.
    Liu L; Lu H; Whelan M; Chen Y; Ding X
    IEEE J Biomed Health Inform; 2024 May; 28(5):2674-2686. PubMed ID: 38478458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.