BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26415204)

  • 1. Bovine Osteochondral Tissues: A Questionable Model to Evaluate Mechanical Loading In Vitro.
    Tekari A; Luginbuehl R; Hofstetter W; Egli RJ
    IEEE Trans Nanobioscience; 2015 Oct; 14(7):716-21. PubMed ID: 26415204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous three-dimensional strain fields during unconfined cyclic compression in bovine articular cartilage explants.
    Neu CP; Hull ML; Walton JH
    J Orthop Res; 2005 Nov; 23(6):1390-8. PubMed ID: 15972257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of loading and material on the biomechanical properties and vitality of bovine cartilage in vitro.
    Pöllänen R; Tikkanen AM; Lammi MJ; Lappalainen R
    J Appl Biomater Biomech; 2011; 9(1):47-53. PubMed ID: 21445828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MRI-based technique for determining nonuniform deformations throughout the volume of articular cartilage explants.
    Neu CP; Hull ML; Walton JH; Buonocore MH
    Magn Reson Med; 2005 Feb; 53(2):321-8. PubMed ID: 15678528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage.
    Waldman SD; Spiteri CG; Grynpas MD; Pilliar RM; Kandel RA
    Tissue Eng; 2004; 10(9-10):1323-31. PubMed ID: 15588393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibronectin metabolism of cartilage explants in response to the frequency of intermittent loading.
    Wolf A; Raiss RX; Steinmeyer J
    J Orthop Res; 2003 Nov; 21(6):1081-9. PubMed ID: 14554222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling.
    Neu CP; Khalafi A; Komvopoulos K; Schmid TM; Reddi AH
    Arthritis Rheum; 2007 Nov; 56(11):3706-14. PubMed ID: 17968924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cartilage mechanical response under dynamic compression at physiological stress levels following collagenase digestion.
    Park S; Nicoll SB; Mauck RL; Ateshian GA
    Ann Biomed Eng; 2008 Mar; 36(3):425-34. PubMed ID: 18193355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen biosynthesis of mechanically loaded articular cartilage explants.
    Ackermann B; Steinmeyer J
    Osteoarthritis Cartilage; 2005 Oct; 13(10):906-14. PubMed ID: 16129631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collagen synthesis of articular cartilage explants in response to frequency of cyclic mechanical loading.
    Wolf A; Ackermann B; Steinmeyer J
    Cell Tissue Res; 2007 Jan; 327(1):155-66. PubMed ID: 16941123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A depth dependent transversely isotropic micromechanic model of articular cartilage.
    Elhamian SM; Alizadeh M; Shokrieh MM; Karimi A
    J Mater Sci Mater Med; 2015 Feb; 26(2):111. PubMed ID: 25665849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of cartilaginous matrix accumulation on viscoelastic response of chondrocyte/agarose constructs under dynamic compressive and shear loading.
    Miyata S; Tateishi T; Ushida T
    J Biomech Eng; 2008 Oct; 130(5):051016. PubMed ID: 19045523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cartilage reshaping via in vitro mechanical loading.
    Williams GM; Lin JW; Sah RL
    Tissue Eng; 2007 Dec; 13(12):2903-11. PubMed ID: 17716002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of tissue composition and structure to mechanical response of articular cartilage under different loading geometries and strain rates.
    Julkunen P; Jurvelin JS; Isaksson H
    Biomech Model Mechanobiol; 2010 Apr; 9(2):237-45. PubMed ID: 19680701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward an MRI-based method to measure non-uniform cartilage deformation: an MRI-cyclic loading apparatus system and steady-state cyclic displacement of articular cartilage under compressive loading.
    Neu CP; Hull ML
    J Biomech Eng; 2003 Apr; 125(2):180-8. PubMed ID: 12751279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage.
    Zevenbergen L; Gsell W; Cai L; Chan DD; Famaey N; Vander Sloten J; Himmelreich U; Neu CP; Jonkers I
    Osteoarthritis Cartilage; 2018 Dec; 26(12):1699-1709. PubMed ID: 30172835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive fatigue and endurance of juvenile bovine articular cartilage explants.
    Riemenschneider PE; Rose MD; Giordani M; McNary SM
    J Biomech; 2019 Oct; 95():109304. PubMed ID: 31447176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moderate cyclic tensile strain alters the assembly of cartilage extracellular matrix proteins in vitro.
    Bleuel J; Zaucke F; Brüggemann GP; Heilig J; Wolter ML; Hamann N; Firner S; Niehoff A
    J Biomech Eng; 2015 Jun; 137(6):061009. PubMed ID: 25782164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Displacement encoding for the measurement of cartilage deformation.
    Neu CP; Walton JH
    Magn Reson Med; 2008 Jan; 59(1):149-55. PubMed ID: 18050342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.