BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26415447)

  • 1. Effect of Exogenous Phytase Addition on Soil Phosphatase Activities: a Fluorescence Spectroscopy Study.
    Yang XZ; Chen ZH; Zhang YL; Chen LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May; 35(5):1294-9. PubMed ID: 26415447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Distribution Characteristics of Soil Phosphorus Forms and Phosphatase Activity at Different Altitudes in the Soil of Water-Level-Fluctuation Zone in Pengxi River, Three Gorges Reservoir].
    Gao YL; Fang F; Tang ZC; Zhang R; Jiang YX; Guo JS
    Huan Jing Ke Xue; 2022 Oct; 43(10):4630-4638. PubMed ID: 36224148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity.
    Turner BL; Haygarth PM
    Sci Total Environ; 2005 May; 344(1-3):27-36. PubMed ID: 15907508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Change in soil enzymes activities after adding biochar or straw by fluorescent microplate method].
    Zhang YL; Chen LJ; Duan ZH; Wu ZJ; Sun CX; Wang JY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Feb; 34(2):455-9. PubMed ID: 24822420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Glucose-1-Phosphatase with High Phytase Activity and Unusual Metal Ion Activation from Soil Bacterium Pantoea sp. Strain 3.5.1.
    Suleimanova AD; Beinhauer A; Valeeva LR; Chastukhina IB; Balaban NP; Shakirov EV; Greiner R; Sharipova MR
    Appl Environ Microbiol; 2015 Oct; 81(19):6790-9. PubMed ID: 26209662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study.
    Jin Y; Liang X; He M; Liu Y; Tian G; Shi J
    Chemosphere; 2016 Jan; 142():128-35. PubMed ID: 26212669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro efficacies of phosphorolytic enzymes synthesized in mycelial cells of Aspergillus niger AbZ4 grown by a liquid surface fermentation.
    Zyła K; Gogol D
    J Agric Food Chem; 2002 Feb; 50(4):899-905. PubMed ID: 11829665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Phosphatase activities in rice-planting meadow brown soil and their responses to fertilization].
    Shen J; Chen Z; Chen L
    Ying Yong Sheng Tai Xue Bao; 2005 Mar; 16(3):583-5. PubMed ID: 15943382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel phytase from Pteris vittata resistant to arsenate, high temperature, and soil deactivation.
    Lessl JT; Ma LQ; Rathinasabapathi B; Guy C
    Environ Sci Technol; 2013 Mar; 47(5):2204-11. PubMed ID: 23379685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selectivity in Enzymatic Phosphorus Recycling from Biopolymers: Isotope Effect, Reactivity Kinetics, and Molecular Docking with Fungal and Plant Phosphatases.
    Solhtalab M; Moller SR; Gu AZ; Jaisi D; Aristilde L
    Environ Sci Technol; 2022 Nov; 56(22):16441-16452. PubMed ID: 36283689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of organic and conventional management of sugar cane crop on soil physicochemical characteristics and phosphomonoesterase activity.
    Purcena LL; Di Medeiros MC; Leandro WM; Fernandes KF
    J Agric Food Chem; 2014 Feb; 62(7):1456-63. PubMed ID: 24475929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A protocol to assess the enzymatic release of dissolved organic phosphorus species in waters under environmentally relevant conditions.
    Monbet P; McKelvie ID; Saefumillah A; Worsfold PJ
    Environ Sci Technol; 2007 Nov; 41(21):7479-85. PubMed ID: 18044529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of rice straw biochar effects on phosphorus sorption characteristics of acid upland red soils.
    Liu Y; Zhu ZQ; He XS; Yang C; Du YQ; Huang YD; Su P; Wang S; Zheng XX; Xue YJ
    Chemosphere; 2018 Sep; 207():267-277. PubMed ID: 29803158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of exogenous phytase on degradation of inositol phosphate in dairy cows.
    Brask-Pedersen DN; Glitsø LV; Skov LK; Lund P; Sehested J
    J Dairy Sci; 2013 Mar; 96(3):1691-700. PubMed ID: 23312994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of humic acid-promoted hydrolysis of phytate through stabilizing a conserved catalytic domain in phytase.
    Ge X; Zhang W; Putnis CV; Wang L
    Environ Sci Process Impacts; 2022 Jul; 24(7):1082-1093. PubMed ID: 35730733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of bioavailable organic phosphorus in tropical forest soils by organic acid extraction and phosphatase hydrolysis.
    Darch T; Blackwell MS; Chadwick D; Haygarth PM; Hawkins JM; Turner BL
    Geoderma; 2016 Dec; 284():93-102. PubMed ID: 27990026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examining the Effects of Biochar Application on Soil Phosphorus Levels and Phosphatase Activities with Visible and Fluorescence Spectroscopy.
    Zhang YL; Chen LJ; Zhang YG; Wu ZJ; Ma XZ; Yang XZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jul; 36(7):2325-9. PubMed ID: 30036023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoextraction of excess soil phosphorus.
    Sharma NC; Starnes DL; Sahi SV
    Environ Pollut; 2007 Mar; 146(1):120-7. PubMed ID: 16904249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Land use as an explanatory factor for potential phosphorus loss risk, assessed by P indices and their governing parameters.
    Zhou B; Vogt RD; Lu X; Yang X; Lü C; Mohr CW; Zhu L
    Environ Sci Process Impacts; 2015 Aug; 17(8):1443-54. PubMed ID: 26151813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytase activity in tobacco (Nicotiana tabacum) root exudates is exhibited by a purple acid phosphatase.
    Lung SC; Leung A; Kuang R; Wang Y; Leung P; Lim BL
    Phytochemistry; 2008 Jan; 69(2):365-73. PubMed ID: 17897689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.