These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 26415847)

  • 1. Excited States and Photochemistry of Chromophores in the Photoactive Proteins Explored by the Combined Quantum Mechanical and Molecular Mechanical Calculations.
    Liu L; Cui G; Fang WH
    Adv Protein Chem Struct Biol; 2015; 100():255-84. PubMed ID: 26415847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of microhydration on the electronic structure of the chromophores of the photoactive yellow and green fluorescent proteins.
    Zuev D; Bravaya KB; Makarova MV; Krylov AI
    J Chem Phys; 2011 Nov; 135(19):194304. PubMed ID: 22112079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling radical formation in the photoactive yellow protein chromophore.
    Mooney CR; Parkes MA; Iskra A; Fielding HH
    Angew Chem Int Ed Engl; 2015 May; 54(19):5646-9. PubMed ID: 25782419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photodynamics in complex environments: ab initio multiple spawning quantum mechanical/molecular mechanical dynamics.
    Virshup AM; Punwong C; Pogorelov TV; Lindquist BA; Ko C; Martínez TJ
    J Phys Chem B; 2009 Mar; 113(11):3280-91. PubMed ID: 19090684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation-Wavelength-Dependent Photocycle Initiation Dynamics Resolve Heterogeneity in the Photoactive Yellow Protein from Halorhodospira halophila.
    Mix LT; Carroll EC; Morozov D; Pan J; Gordon WR; Philip A; Fuzell J; Kumauchi M; van Stokkum I; Groenhof G; Hoff WD; Larsen DS
    Biochemistry; 2018 Mar; 57(11):1733-1747. PubMed ID: 29465990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication maps of vibrational energy transport through Photoactive Yellow Protein.
    Xu Y; Leitner DM
    J Phys Chem A; 2014 Sep; 118(35):7280-7. PubMed ID: 24552496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles simulation of photoreactions in biological systems.
    Rossle SC; Frank I
    Front Biosci (Landmark Ed); 2009 Jun; 14(13):4862-77. PubMed ID: 19482592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pB(2) intermediate of the photoactive yellow protein: structure and excitation energies.
    Hsiao YW; Thiel W
    J Phys Chem B; 2011 Mar; 115(9):2097-106. PubMed ID: 21319777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral tuning of photoactive yellow protein.
    Yamato T; Ishikura T; Kakitani T; Kawaguchi K; Watanabe H
    Photochem Photobiol; 2007; 83(2):323-7. PubMed ID: 17017845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced isomerization of the photoactive yellow protein (PYP) chromophore: interplay of two torsions, a HOOP mode and hydrogen bonding.
    Gromov EV; Burghardt I; Köppel H; Cederbaum LS
    J Phys Chem A; 2011 Aug; 115(33):9237-48. PubMed ID: 21744877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proline 68 enhances photoisomerization yield in photoactive yellow protein.
    Rupenyan AB; Vreede J; van Stokkum IH; Hospes M; Kennis JT; Hellingwerf KJ; Groot ML
    J Phys Chem B; 2011 May; 115(20):6668-77. PubMed ID: 21542640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpolated mechanics-molecular mechanics study of internal rotation dynamics of the chromophore unit in blue fluorescent protein and its variants.
    Park JW; Rhee YM
    J Phys Chem B; 2012 Sep; 116(36):11137-47. PubMed ID: 22891786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic circular dichroism of fluorescent proteins: a computational study.
    Pikulska A; Steindal AH; Beerepoot MT; Pecul M
    J Phys Chem B; 2015 Feb; 119(8):3377-86. PubMed ID: 25646666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the similarity of the photoabsorption of deprotonated p-coumaric acid in the gas phase and within the photoactive yellow protein.
    Rocha-Rinza T; Sneskov K; Christiansen O; Ryde U; Kongsted J
    Phys Chem Chem Phys; 2011 Jan; 13(4):1585-9. PubMed ID: 21132197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins.
    Ai HW; Shaner NC; Cheng Z; Tsien RY; Campbell RE
    Biochemistry; 2007 May; 46(20):5904-10. PubMed ID: 17444659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen-Bonding Interaction Regulates Photoisomerization of a Single-Bond-Rotation Locked Photoactive Yellow Protein Chromophore in Protein.
    Zhang TS; Fang YG; Song XF; Fang WH; Cui G
    J Phys Chem Lett; 2020 Apr; 11(7):2470-2476. PubMed ID: 32150415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QM/MM study of the monomeric red fluorescent protein DsRed.M1.
    Sanchez-Garcia E; Doerr M; Hsiao YW; Thiel W
    J Phys Chem B; 2009 Dec; 113(52):16622-31. PubMed ID: 19994834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonadiabatic ab initio dynamics of a model protonated Schiff base of 9-cis retinal.
    Chung WC; Nanbu S; Ishida T
    J Phys Chem A; 2010 Aug; 114(32):8190-201. PubMed ID: 20666503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photokinetic, biochemical and structural features of chimeric photoactive yellow protein constructs.
    Kyndt JA; Meyer TE; Olson KT; Van Beeumen J; Cusanovich MA
    Photochem Photobiol; 2013; 89(2):349-60. PubMed ID: 22958002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of zwitterions in kindling fluorescent protein photochemistry.
    Mironov VA; Bravaya KB; Nemukhin AV
    J Phys Chem B; 2015 Feb; 119(6):2467-74. PubMed ID: 25365115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.