These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 26415859)
1. Reduced apurinic/apyrimidinic endonuclease 1 activity and increased DNA damage in mitochondria are related to enhanced apoptosis and inflammation in the brain of senescence- accelerated P8 mice (SAMP8). Torregrosa-Muñumer R; Gómez A; Vara E; Kireev R; Barja G; Tresguerres JA; Gredilla R Biogerontology; 2016 Apr; 17(2):325-35. PubMed ID: 26415859 [TBL] [Abstract][Full Text] [Related]
2. Regulation of the p19(Arf)/p53 pathway by histone acetylation underlies neural stem cell behavior in senescence-prone SAMP8 mice. Soriano-Cantón R; Perez-Villalba A; Morante-Redolat JM; Marqués-Torrejón MÁ; Pallás M; Pérez-Sánchez F; Fariñas I Aging Cell; 2015 Jun; 14(3):453-62. PubMed ID: 25728253 [TBL] [Abstract][Full Text] [Related]
3. Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8. Eckert GP; Schiborr C; Hagl S; Abdel-Kader R; Müller WE; Rimbach G; Frank J Neurochem Int; 2013 Apr; 62(5):595-602. PubMed ID: 23422877 [TBL] [Abstract][Full Text] [Related]
4. Dysfunction of astrocytes in senescence-accelerated mice SAMP8 reduces their neuroprotective capacity. García-Matas S; Gutierrez-Cuesta J; Coto-Montes A; Rubio-Acero R; Díez-Vives C; Camins A; Pallàs M; Sanfeliu C; Cristòfol R Aging Cell; 2008 Oct; 7(5):630-40. PubMed ID: 18616637 [TBL] [Abstract][Full Text] [Related]
5. Behaviour and cognitive changes correlated with hippocampal neuroinflammaging and neuronal markers in female SAMP8, a model of accelerated senescence. Griñan-Ferré C; Palomera-Ávalos V; Puigoriol-Illamola D; Camins A; Porquet D; Plá V; Aguado F; Pallàs M Exp Gerontol; 2016 Jul; 80():57-69. PubMed ID: 27094468 [TBL] [Abstract][Full Text] [Related]
6. Bcl2 inhibition of mitochondrial DNA repair. Xie M; Doetsch PW; Deng X BMC Cancer; 2015 Aug; 15():586. PubMed ID: 26268226 [TBL] [Abstract][Full Text] [Related]
7. Cholinesterase activity in brain of senescence-accelerated-resistant mouse SAMR1 and its variation in brain of senescence-accelerated-prone mouse SAMP8. Fernández-Gómez FJ; Muñoz-Delgado E; Montenegro MF; Campoy FJ; Vidal CJ; Jordán J J Neurosci Res; 2010 Jan; 88(1):155-66. PubMed ID: 19610099 [TBL] [Abstract][Full Text] [Related]
8. Age-related expression of adenosine receptors in brain from the senescence-accelerated mouse. Castillo CA; Albasanz JL; León D; Jordán J; Pallàs M; Camins A; Martín M Exp Gerontol; 2009; 44(6-7):453-61. PubMed ID: 19410642 [TBL] [Abstract][Full Text] [Related]
9. Effect of growth hormone treatment on pancreatic inflammation, oxidative stress, and apoptosis related to aging in SAMP8 mice. Cuesta S; Kireev R; García C; Forman K; Vara E; Tresguerres JA Rejuvenation Res; 2011 Oct; 14(5):501-12. PubMed ID: 21958002 [TBL] [Abstract][Full Text] [Related]
10. Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol. Cristòfol R; Porquet D; Corpas R; Coto-Montes A; Serret J; Camins A; Pallàs M; Sanfeliu C J Pineal Res; 2012 Apr; 52(3):271-81. PubMed ID: 22085194 [TBL] [Abstract][Full Text] [Related]
12. Aging-related renal injury and inflammation are associated with downregulation of Klotho and induction of RIG-I/NF-κB signaling pathway in senescence-accelerated mice. Zeng Y; Wang PH; Zhang M; Du JR Aging Clin Exp Res; 2016 Feb; 28(1):69-76. PubMed ID: 25986237 [TBL] [Abstract][Full Text] [Related]
13. Melatonin decreases the expression of inflammation and apoptosis markers in the lung of a senescence-accelerated mice model. Puig Á; Rancan L; Paredes SD; Carrasco A; Escames G; Vara E; Tresguerres JA Exp Gerontol; 2016 Mar; 75():1-7. PubMed ID: 26656745 [TBL] [Abstract][Full Text] [Related]
14. Ameliorative effects of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice. Gong Y; Liu L; Xie B; Liao Y; Yang E; Sun Z Behav Brain Res; 2008 Dec; 194(1):100-7. PubMed ID: 18652848 [TBL] [Abstract][Full Text] [Related]
15. Age-related changes in energy production in fresh senescence-accelerated mouse brain slices as revealed by positron autoradiography. Omata N; Murata T; Fujibayashi Y; Waki A; Sadato N; Yoshimoto M; Wada Y; Yonekura Y Dement Geriatr Cogn Disord; 2001; 12(2):78-84. PubMed ID: 11173878 [TBL] [Abstract][Full Text] [Related]
16. Apurinic/apyrimidinic endonuclease 1 on aging-associated deteriorations in rat kidneys. Chang IY; Lee JH; Kim JN; Lee KH; Park KS; Yoon SP Free Radic Res; 2015 Jan; 49(1):95-101. PubMed ID: 25363496 [TBL] [Abstract][Full Text] [Related]
18. NMR-based metabonomic investigations into the metabolic profile of the senescence-accelerated mouse. Jiang N; Yan X; Zhou W; Zhang Q; Chen H; Zhang Y; Zhang X J Proteome Res; 2008 Sep; 7(9):3678-86. PubMed ID: 18656976 [TBL] [Abstract][Full Text] [Related]
19. Favorable effects of a prolonged treatment with melatonin on the level of oxidative damage and neurodegeneration in senescence-accelerated mice. Caballero B; Vega-Naredo I; Sierra V; Huidobro-Fernández C; Soria-Valles C; De Gonzalo-Calvo D; Tolivia D; Gutierrez-Cuesta J; Pallas M; Camins A; Rodríguez-Colunga MJ; Coto-Montes A J Pineal Res; 2008 Oct; 45(3):302-11. PubMed ID: 18410310 [TBL] [Abstract][Full Text] [Related]
20. Senescence accelerated mouse strain is sensitive to neurodegeneration induced by mild impairment of oxidative metabolism. Zhang Q; Ding H; Li W; Fan Z; Sun A; Luo J; Ke ZJ Brain Res; 2009 Apr; 1264():111-8. PubMed ID: 19232329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]