BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26416674)

  • 1. Optical micro-spectroscopy of single metallic nanoparticles: quantitative extinction and transient resonant four-wave mixing.
    Payne L; Zoriniants G; Masia F; Arkill KP; Verkade P; Rowles D; Langbein W; Borri P
    Faraday Discuss; 2015; 184():305-20. PubMed ID: 26416674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization-resolved ultrafast dynamics of the complex polarizability in single gold nanoparticles.
    Masia F; Langbein W; Borri P
    Phys Chem Chem Phys; 2013 Mar; 15(12):4226-32. PubMed ID: 23329258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical frequency mixing at coupled gold nanoparticles.
    Danckwerts M; Novotny L
    Phys Rev Lett; 2007 Jan; 98(2):026104. PubMed ID: 17358623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of spectral anisotropy of gold nanoparticles.
    Cang H; Montiel D; Xu CS; Yang H
    J Chem Phys; 2008 Jul; 129(4):044503. PubMed ID: 18681656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes.
    Truong PL; Ma X; Sim SJ
    Nanoscale; 2014 Feb; 6(4):2307-15. PubMed ID: 24413584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonant four-wave mixing of gold nanoparticles for three-dimensional cell microscopy.
    Masia F; Langbein W; Watson P; Borri P
    Opt Lett; 2009 Jun; 34(12):1816-8. PubMed ID: 19529713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon resonance properties of single elongated nano-objects: gold nanobipyramids and nanorods.
    Lombardi A; Loumaigne M; Crut A; Maioli P; Del Fatti N; Vallée F; Spuch-Calvar M; Burgin J; Majimel J; Tréguer-Delapierre M
    Langmuir; 2012 Jun; 28(24):9027-33. PubMed ID: 22369067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single metal nanoparticle spectroscopy: optical characterization of individual nanosystems for biomedical applications.
    Biswas A; Wang T; Biris AS
    Nanoscale; 2010 Sep; 2(9):1560-72. PubMed ID: 20661516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The optical nanosizer - quantitative size and shape analysis of individual nanoparticles by high-throughput widefield extinction microscopy.
    Payne LM; Albrecht W; Langbein W; Borri P
    Nanoscale; 2020 Aug; 12(30):16215-16228. PubMed ID: 32706004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Widefield spectral monitoring of nanometer distance changes in DNA-templated plasmon rulers.
    Lermusiaux L; Maillard V; Bidault S
    ACS Nano; 2015 Jan; 9(1):978-90. PubMed ID: 25565325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation.
    Butet J; Bachelier G; Duboisset J; Bertorelle F; Russier-Antoine I; Jonin C; Benichou E; Brevet PF
    Opt Express; 2010 Oct; 18(21):22314-23. PubMed ID: 20941132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors.
    Mahmoud MA; El-Sayed MA
    J Am Chem Soc; 2010 Sep; 132(36):12704-10. PubMed ID: 20722373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q; Large N; Wang H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the X-ray induced gold nanoparticle synthesis.
    Plech A; Kotaidis V; Siems A; Sztucki M
    Phys Chem Chem Phys; 2008 Jul; 10(26):3888-94. PubMed ID: 18688388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.
    Chiu CS; Gwo S
    Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light Extinction by Agglomerates of Gold Nanoparticles: A Plasmon Ruler for Sub-10 nm Interparticle Distances.
    Kelesidis GA; Gao D; Starsich FHL; Pratsinis SE
    Anal Chem; 2022 Apr; 94(13):5310-5316. PubMed ID: 35312292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-Dependent Plasmonic Responses from Gold Nanoparticle Dimers Linked by Double-Stranded DNA.
    Lermusiaux L; Bidault S
    Langmuir; 2018 Dec; 34(49):14946-14953. PubMed ID: 30075633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami.
    Zhang T; Gao N; Li S; Lang MJ; Xu QH
    J Phys Chem Lett; 2015 Jun; 6(11):2043-9. PubMed ID: 26266500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.