BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26416701)

  • 1. Facile synthesis of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies for single-particle surface-enhanced Raman scattering.
    Song CY; Zhou N; Yang BY; Yang YJ; Wang LH
    Nanoscale; 2015 Oct; 7(40):17004-11. PubMed ID: 26416701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanoflowers with tunable sheet-like petals: facile synthesis, SERS performances and cell imaging.
    Song CY; Yang BY; Chen WQ; Dou YX; Yang YJ; Zhou N; Wang LH
    J Mater Chem B; 2016 Nov; 4(44):7112-7118. PubMed ID: 32263648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile Synthesis of Uniform Raspberry-Like Gold Nanoparticles for High Performance Surface Enhanced Raman Scattering.
    Rong Y; Zhang L; Liu Z; Dai L; Huang Y; Chen T
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5683-8. PubMed ID: 27427615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of chitosan-coated gold nanoflowers as SERS-active probes.
    Xu D; Gu J; Wang W; Yu X; Xi K; Jia X
    Nanotechnology; 2010 Sep; 21(37):375101. PubMed ID: 20720293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile One-Pot Synthesis of Nanodot-Decorated Gold-Silver Alloy Nanoboxes for Single-Particle Surface-Enhanced Raman Scattering Activity.
    Li J; Zhang G; Wang J; Maksymov IS; Greentree AD; Hu J; Shen A; Wang Y; Trau M
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32526-32535. PubMed ID: 30168708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of size-tunable chitosan encapsulated gold-silver nanoflowers and their application in SERS imaging of living cells.
    Zhang G; Li J; Shen A; Hu J
    Phys Chem Chem Phys; 2015 Sep; 17(33):21261-7. PubMed ID: 25622685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.
    Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J
    Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging.
    Li Q; Jiang Y; Han R; Zhong X; Liu S; Li ZY; Sha Y; Xu D
    Small; 2013 Mar; 9(6):927-32. PubMed ID: 23180641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The synthesis of SERS-active gold nanoflower tags for in vivo applications.
    Xie J; Zhang Q; Lee JY; Wang DI
    ACS Nano; 2008 Dec; 2(12):2473-80. PubMed ID: 19206281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Fabrication of Gold Nanoflowers Tuned by pH: Insights Into the Growth Mechanism.
    Lv C; Zhang XY; Mu CL; Wu D; Wang CM; Zhang QL
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2761-9. PubMed ID: 26353490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step controlled synthesis of anisotropic gold nanostructures with aniline as the reductant in aqueous solution.
    Guo Z; Zhang Y; Huang L; Wang M; Wang J; Sun J; Xu L; Gu N
    J Colloid Interface Sci; 2007 May; 309(2):518-23. PubMed ID: 17300797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seedless synthesis and SERS characterization of multi-branched gold nanoflowers using water soluble polymers.
    Kariuki VM; Hoffmeier JC; Yazgan I; Sadik OA
    Nanoscale; 2017 Jun; 9(24):8330-8340. PubMed ID: 28590471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications.
    Fan Z; Zhang H
    Acc Chem Res; 2016 Dec; 49(12):2841-2850. PubMed ID: 27993013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of gold nanoflowers with high surface-enhanced Raman scattering activity.
    Jiang Y; Wu XJ; Li Q; Li J; Xu D
    Nanotechnology; 2011 Sep; 22(38):385601. PubMed ID: 21878721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant-directed multiple anisotropic gold nanostructures: synthesis and surface-enhanced Raman scattering.
    Joseph D; Geckeler KE
    Langmuir; 2009 Nov; 25(22):13224-31. PubMed ID: 19743838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Surface-Enhanced Raman Scattering-Active Gold Nanoflowers by 5-Hydroxytryptophan in Acidic Solution.
    Sun YN; Xu H; Ding XY; Yu YB; Zhang QQ
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1427-33. PubMed ID: 26353667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green synthesis of asymmetrically textured silver meso-flowers (AgMFs) as highly sensitive SERS substrates.
    Nhung TT; Lee SW
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21335-45. PubMed ID: 25369521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.