These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 26416832)
1. AraR, an l-Arabinose-Responsive Transcriptional Regulator in Corynebacterium glutamicum ATCC 31831, Exerts Different Degrees of Repression Depending on the Location of Its Binding Sites within the Three Target Promoter Regions. Kuge T; Teramoto H; Inui M J Bacteriol; 2015 Dec; 197(24):3788-96. PubMed ID: 26416832 [TBL] [Abstract][Full Text] [Related]
2. The LacI-Type transcriptional regulator AraR acts as an L-arabinose-responsive repressor of L-arabinose utilization genes in Corynebacterium glutamicum ATCC 31831. Kuge T; Teramoto H; Yukawa H; Inui M J Bacteriol; 2014 Jun; 196(12):2242-54. PubMed ID: 24706742 [TBL] [Abstract][Full Text] [Related]
3. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Kawaguchi H; Sasaki M; Vertès AA; Inui M; Yukawa H Appl Environ Microbiol; 2009 Jun; 75(11):3419-29. PubMed ID: 19346355 [TBL] [Abstract][Full Text] [Related]
4. Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization. Sá-Nogueira I; Ramos SS J Bacteriol; 1997 Dec; 179(24):7705-11. PubMed ID: 9401028 [TBL] [Abstract][Full Text] [Related]
5. Mode of action of AraR, the key regulator of L-arabinose metabolism in Bacillus subtilis. Mota LJ; Tavares P; Sá-Nogueira I Mol Microbiol; 1999 Aug; 33(3):476-89. PubMed ID: 10417639 [TBL] [Abstract][Full Text] [Related]
6. Control of the arabinose regulon in Bacillus subtilis by AraR in vivo: crucial roles of operators, cooperativity, and DNA looping. Mota LJ; Sarmento LM; de Sá-Nogueira I J Bacteriol; 2001 Jul; 183(14):4190-201. PubMed ID: 11418559 [TBL] [Abstract][Full Text] [Related]
7. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum. Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103 [TBL] [Abstract][Full Text] [Related]
8. Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon. Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I Nucleic Acids Res; 2007; 35(14):4755-66. PubMed ID: 17617643 [TBL] [Abstract][Full Text] [Related]
9. The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules. Rückert C; Milse J; Albersmeier A; Koch DJ; Pühler A; Kalinowski J BMC Genomics; 2008 Oct; 9():483. PubMed ID: 18854009 [TBL] [Abstract][Full Text] [Related]
10. Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis. Inácio JM; Costa C; de Sá-Nogueira I Microbiology (Reading); 2003 Sep; 149(Pt 9):2345-2355. PubMed ID: 12949161 [TBL] [Abstract][Full Text] [Related]
11. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Sasaki M; Jojima T; Kawaguchi H; Inui M; Yukawa H Appl Microbiol Biotechnol; 2009 Nov; 85(1):105-15. PubMed ID: 19529932 [TBL] [Abstract][Full Text] [Related]
12. The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Koch DJ; Rückert C; Albersmeier A; Hüser AT; Tauch A; Pühler A; Kalinowski J Mol Microbiol; 2005 Oct; 58(2):480-94. PubMed ID: 16194234 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional response of Corynebacterium glutamicum ATCC 13032 to hydrogen peroxide stress and characterization of the OxyR regulon. Milse J; Petri K; Rückert C; Kalinowski J J Biotechnol; 2014 Nov; 190():40-54. PubMed ID: 25107507 [TBL] [Abstract][Full Text] [Related]
14. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene. Sá-Nogueira I; Mota LJ J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819 [TBL] [Abstract][Full Text] [Related]
15. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. Gaigalat L; Schlüter JP; Hartmann M; Mormann S; Tauch A; Pühler A; Kalinowski J BMC Mol Biol; 2007 Nov; 8():104. PubMed ID: 18005413 [TBL] [Abstract][Full Text] [Related]
16. The Zur regulon of Corynebacterium glutamicum ATCC 13032. Schröder J; Jochmann N; Rodionov DA; Tauch A BMC Genomics; 2010 Jan; 11():12. PubMed ID: 20055984 [TBL] [Abstract][Full Text] [Related]
17. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose. Kawaguchi H; Yoshihara K; Hara KY; Hasunuma T; Ogino C; Kondo A Microb Cell Fact; 2018 May; 17(1):76. PubMed ID: 29773073 [TBL] [Abstract][Full Text] [Related]
18. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. Kohl TA; Tauch A J Biotechnol; 2009 Sep; 143(4):239-46. PubMed ID: 19665500 [TBL] [Abstract][Full Text] [Related]
19. Control of adhA and sucR expression by the SucR regulator in Corynebacterium glutamicum. Auchter M; Laslo T; Fleischer C; Schiller L; Arndt A; Gaigalat L; Kalinowski J; Eikmanns BJ J Biotechnol; 2011 Mar; 152(3):77-86. PubMed ID: 21320555 [TBL] [Abstract][Full Text] [Related]
20. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. Kohl TA; Baumbach J; Jungwirth B; Pühler A; Tauch A J Biotechnol; 2008 Jul; 135(4):340-50. PubMed ID: 18573287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]