These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 26416832)
21. The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Rey DA; Nentwich SS; Koch DJ; Rückert C; Pühler A; Tauch A; Kalinowski J Mol Microbiol; 2005 May; 56(4):871-87. PubMed ID: 15853877 [TBL] [Abstract][Full Text] [Related]
22. Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. Nentwich SS; Brinkrolf K; Gaigalat L; Hüser AT; Rey DA; Mohrbach T; Marin K; Pühler A; Tauch A; Kalinowski J Microbiology (Reading); 2009 Jan; 155(Pt 1):150-164. PubMed ID: 19118356 [TBL] [Abstract][Full Text] [Related]
23. Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR. Uhde A; Brühl N; Goldbeck O; Matano C; Gurow O; Rückert C; Marin K; Wendisch VF; Krämer R; Seibold GM J Bacteriol; 2016 Aug; 198(16):2204-18. PubMed ID: 27274030 [TBL] [Abstract][Full Text] [Related]
24. Molecular mechanism of SugR-mediated sugar-dependent expression of the ldhA gene encoding L-lactate dehydrogenase in Corynebacterium glutamicum. Toyoda K; Teramoto H; Inui M; Yukawa H Appl Microbiol Biotechnol; 2009 May; 83(2):315-27. PubMed ID: 19221735 [TBL] [Abstract][Full Text] [Related]
25. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Engels S; Schweitzer JE; Ludwig C; Bott M; Schaffer S Mol Microbiol; 2004 Apr; 52(1):285-302. PubMed ID: 15049827 [TBL] [Abstract][Full Text] [Related]
26. The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. Brinkrolf K; Plöger S; Solle S; Brune I; Nentwich SS; Hüser AT; Kalinowski J; Pühler A; Tauch A Microbiology (Reading); 2008 Apr; 154(Pt 4):1068-1081. PubMed ID: 18375800 [TBL] [Abstract][Full Text] [Related]
27. Regulation of the malic enzyme gene malE by the transcriptional regulator MalR in Corynebacterium glutamicum. Krause JP; Polen T; Youn JW; Emer D; Eikmanns BJ; Wendisch VF J Biotechnol; 2012 Jun; 159(3):204-15. PubMed ID: 22261175 [TBL] [Abstract][Full Text] [Related]
28. OxyR acts as a transcriptional repressor of hydrogen peroxide-inducible antioxidant genes in Corynebacterium glutamicum R. Teramoto H; Inui M; Yukawa H FEBS J; 2013 Jul; 280(14):3298-312. PubMed ID: 23621709 [TBL] [Abstract][Full Text] [Related]
29. Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. Cramer A; Gerstmeir R; Schaffer S; Bott M; Eikmanns BJ J Bacteriol; 2006 Apr; 188(7):2554-67. PubMed ID: 16547043 [TBL] [Abstract][Full Text] [Related]
30. Transcriptional regulation of Corynebacterium glutamicum methionine biosynthesis genes in response to methionine supplementation under oxygen deprivation. Suda M; Teramoto H; Imamiya T; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Dec; 81(3):505-13. PubMed ID: 18800184 [TBL] [Abstract][Full Text] [Related]
31. Target genes and DNA-binding sites of the response regulator PhoR from Corynebacterium glutamicum. Schaaf S; Bott M J Bacteriol; 2007 Jul; 189(14):5002-11. PubMed ID: 17496102 [TBL] [Abstract][Full Text] [Related]
32. The manganese-responsive regulator MntR represses transcription of a predicted ZIP family metal ion transporter in Corynebacterium glutamicum. Baumgart M; Frunzke J FEMS Microbiol Lett; 2015 Jan; 362(1):1-10. PubMed ID: 25790484 [TBL] [Abstract][Full Text] [Related]
33. The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum. Shah A; Blombach B; Gauttam R; Eikmanns BJ Appl Microbiol Biotechnol; 2018 Jul; 102(14):5901-5910. PubMed ID: 29804137 [TBL] [Abstract][Full Text] [Related]
34. Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum. Zhang Y; Shang X; Lai S; Zhang G; Liang Y; Wen T Appl Environ Microbiol; 2012 Aug; 78(16):5831-8. PubMed ID: 22685153 [TBL] [Abstract][Full Text] [Related]
35. Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. Jochmann N; Kurze AK; Czaja LF; Brinkrolf K; Brune I; Hüser AT; Hansmeier N; Pühler A; Borovok I; Tauch A Microbiology (Reading); 2009 May; 155(Pt 5):1459-1477. PubMed ID: 19372162 [TBL] [Abstract][Full Text] [Related]
36. Complex regulation of the phosphoenolpyruvate carboxykinase gene pck and characterization of its GntR-type regulator IolR as a repressor of myo-inositol utilization genes in Corynebacterium glutamicum. Klaffl S; Brocker M; Kalinowski J; Eikmanns BJ; Bott M J Bacteriol; 2013 Sep; 195(18):4283-96. PubMed ID: 23873914 [TBL] [Abstract][Full Text] [Related]
37. Negative transcriptional control of biotin metabolism genes by the TetR-type regulator BioQ in biotin-auxotrophic Corynebacterium glutamicum ATCC 13032. Brune I; Götker S; Schneider J; Rodionov DA; Tauch A J Biotechnol; 2012 Jun; 159(3):225-34. PubMed ID: 22178235 [TBL] [Abstract][Full Text] [Related]
38. The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032. Hansmeier N; Albersmeier A; Tauch A; Damberg T; Ros R; Anselmetti D; Pühler A; Kalinowski J Microbiology (Reading); 2006 Apr; 152(Pt 4):923-935. PubMed ID: 16549657 [TBL] [Abstract][Full Text] [Related]
39. Mutations in AraR leading to constitutive expression of arabinolytic genes in Aspergillus niger under derepressing conditions [corrected]. Reijngoud J; Deseke M; Halbesma ETM; Alazi E; Arentshorst M; Punt PJ; Ram AFJ Appl Microbiol Biotechnol; 2019 May; 103(10):4125-4136. PubMed ID: 30963207 [TBL] [Abstract][Full Text] [Related]
40. Transcriptional regulation of genes encoding arabinan-degrading enzymes in Bacillus subtilis. Raposo MP; Inácio JM; Mota LJ; de Sá-Nogueira I J Bacteriol; 2004 Mar; 186(5):1287-96. PubMed ID: 14973026 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]