These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 26416885)

  • 21. Evolutionary analysis of rhodopsin and cone pigments: connecting the three-dimensional structure with spectral tuning and signal transfer.
    Teller DC; Stenkamp RE; Palczewski K
    FEBS Lett; 2003 Nov; 555(1):151-9. PubMed ID: 14630336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectral tuning and deactivation kinetics of marine mammal melanopsins.
    Fasick JI; Algrain H; Samuels C; Mahadevan P; Schweikert LE; Naffaa ZJ; Robinson PR
    PLoS One; 2021; 16(10):e0257436. PubMed ID: 34653198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. All-trans-retinal forms a visible-absorbing pigment with human rod opsin.
    Brueggemann LI; Sullivan JM
    Biochemistry; 2001 Apr; 40(14):4446-53. PubMed ID: 11284701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral tuning of ultraviolet cone pigments: an interhelical lock mechanism.
    Sekharan S; Mooney VL; Rivalta I; Kazmi MA; Neitz M; Neitz J; Sakmar TP; Yan EC; Batista VS
    J Am Chem Soc; 2013 Dec; 135(51):19064-7. PubMed ID: 24295328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vertebrate ancient-long opsin has molecular properties intermediate between those of vertebrate and invertebrate visual pigments.
    Sato K; Yamashita T; Ohuchi H; Shichida Y
    Biochemistry; 2011 Dec; 50(48):10484-90. PubMed ID: 22066464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The opsins.
    Terakita A
    Genome Biol; 2005; 6(3):213. PubMed ID: 15774036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion.
    Babu KR; Dukkipati A; Birge RR; Knox BE
    Biochemistry; 2001 Nov; 40(46):13760-6. PubMed ID: 11705364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Origin of the vertebrate visual cycle: genes encoding retinal photoisomerase and two putative visual cycle proteins are expressed in whole brain of a primitive chordate.
    Nakashima Y; Kusakabe T; Kusakabe R; Terakita A; Shichida Y; Tsuda M
    J Comp Neurol; 2003 May; 460(2):180-90. PubMed ID: 12687683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vision in the ultraviolet.
    Hunt DM; Wilkie SE; Bowmaker JK; Poopalasundaram S
    Cell Mol Life Sci; 2001 Oct; 58(11):1583-98. PubMed ID: 11706986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment.
    Takahashi Y; Ebrey TG
    Biochemistry; 2003 May; 42(20):6025-34. PubMed ID: 12755604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Zebrafish melanopsin: isolation, tissue localisation and phylogenetic position.
    Bellingham J; Whitmore D; Philp AR; Wells DJ; Foster RG
    Brain Res Mol Brain Res; 2002 Nov; 107(2):128-36. PubMed ID: 12487121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments.
    Cowing JA; Poopalasundaram S; Wilkie SE; Robinson PR; Bowmaker JK; Hunt DM
    Biochem J; 2002 Oct; 367(Pt 1):129-35. PubMed ID: 12099889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and characterization of melanopsin photoreceptors of Atlantic salmon (Salmo salar).
    Sandbakken M; Ebbesson L; Stefansson S; Helvik JV
    J Comp Neurol; 2012 Nov; 520(16):3727-44. PubMed ID: 22522777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constitutive activity of a UV cone opsin.
    Kono M
    FEBS Lett; 2006 Jan; 580(1):229-32. PubMed ID: 16368093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectral tuning of shortwave-sensitive visual pigments in vertebrates.
    Hunt DM; Carvalho LS; Cowing JA; Parry JW; Wilkie SE; Davies WL; Bowmaker JK
    Photochem Photobiol; 2007; 83(2):303-10. PubMed ID: 17576346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular evolution of the cone visual pigments in the pure rod-retina of the nocturnal gecko, Gekko gekko.
    Yokoyama S; Blow NS
    Gene; 2001 Oct; 276(1-2):117-25. PubMed ID: 11591478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of mammalian-like melanopsin in cyclostome retinas exhibiting a different extent of visual functions.
    Sun L; Kawano-Yamashita E; Nagata T; Tsukamoto H; Furutani Y; Koyanagi M; Terakita A
    PLoS One; 2014; 9(9):e108209. PubMed ID: 25251771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal.
    Cowing JA; Poopalasundaram S; Wilkie SE; Bowmaker JK; Hunt DM
    Biochemistry; 2002 May; 41(19):6019-25. PubMed ID: 11993996
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectral tuning in salamander visual pigments studied with dihydroretinal chromophores.
    Makino CL; Groesbeek M; Lugtenburg J; Baylor DA
    Biophys J; 1999 Aug; 77(2):1024-35. PubMed ID: 10423447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae).
    Yokoyama S; Zhang H; Radlwimmer FB; Blow NS
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6279-84. PubMed ID: 10339578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.