BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26416891)

  • 1. Characterization of Two Human Skeletal Calsequestrin Mutants Implicated in Malignant Hyperthermia and Vacuolar Aggregate Myopathy.
    Lewis KM; Ronish LA; Ríos E; Kang C
    J Biol Chem; 2015 Nov; 290(48):28665-74. PubMed ID: 26416891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mutation in the CASQ1 gene causes a vacuolar myopathy with accumulation of sarcoplasmic reticulum protein aggregates.
    Rossi D; Vezzani B; Galli L; Paolini C; Toniolo L; Pierantozzi E; Spinozzi S; Barone V; Pegoraro E; Bello L; Cenacchi G; Vattemi G; Tomelleri G; Ricci G; Siciliano G; Protasi F; Reggiani C; Sorrentino V
    Hum Mutat; 2014 Oct; 35(10):1163-70. PubMed ID: 25116801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Calsequestrin-1 Mutation Associated with a Skeletal Muscle Disease Alters Sarcoplasmic Ca2+ Release.
    D'Adamo MC; Sforna L; Visentin S; Grottesi A; Servettini L; Guglielmi L; Macchioni L; Saredi S; Curcio M; De Nuccio C; Hasan S; Corazzi L; Franciolini F; Mora M; Catacuzzeno L; Pessia M
    PLoS One; 2016; 11(5):e0155516. PubMed ID: 27196359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathological mechanisms of vacuolar aggregate myopathy arising from a Casq1 mutation.
    Hanna AD; Lee CS; Babcock L; Wang H; Recio J; Hamilton SL
    FASEB J; 2021 May; 35(5):e21349. PubMed ID: 33786938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of three novel mutations in the CASQ1 gene in four patients with tubular aggregate myopathy.
    Barone V; Del Re V; Gamberucci A; Polverino V; Galli L; Rossi D; Costanzi E; Toniolo L; Berti G; Malandrini A; Ricci G; Siciliano G; Vattemi G; Tomelleri G; Pierantozzi E; Spinozzi S; Volpi N; Fulceri R; Battistutta R; Reggiani C; Sorrentino V
    Hum Mutat; 2017 Dec; 38(12):1761-1773. PubMed ID: 28895244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CASQ1 founder mutation in three Italian families with protein aggregate myopathy and hyperCKaemia.
    Di Blasi C; Sansanelli S; Ruggieri A; Moriggi M; Vasso M; D'Adamo AP; Blasevich F; Zanotti S; Paolini C; Protasi F; Tezzon F; Gelfi C; Morandi L; Pessia M; Mora M
    J Med Genet; 2015 Sep; 52(9):617-26. PubMed ID: 26136523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genotype-Phenotype Correlations of Malignant Hyperthermia and Central Core Disease Mutations in the Central Region of the RYR1 Channel.
    Murayama T; Kurebayashi N; Ogawa H; Yamazawa T; Oyamada H; Suzuki J; Kanemaru K; Oguchi K; Iino M; Sakurai T
    Hum Mutat; 2016 Nov; 37(11):1231-1241. PubMed ID: 27586648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycosylation of skeletal calsequestrin: implications for its function.
    Sanchez EJ; Lewis KM; Munske GR; Nissen MS; Kang C
    J Biol Chem; 2012 Jan; 287(5):3042-50. PubMed ID: 22170046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CASQ1 mutations impair calsequestrin polymerization and cause tubular aggregate myopathy.
    Böhm J; Lornage X; Chevessier F; Birck C; Zanotti S; Cudia P; Bulla M; Granger F; Bui MT; Sartori M; Schneider-Gold C; Malfatti E; Romero NB; Mora M; Laporte J
    Acta Neuropathol; 2018 Jan; 135(1):149-151. PubMed ID: 29039140
    [No Abstract]   [Full Text] [Related]  

  • 10. Tubular aggregates are from whole sarcoplasmic reticulum origin: alterations in calcium binding protein expression in mouse skeletal muscle during aging.
    Chevessier F; Marty I; Paturneau-Jouas M; Hantaï D; Verdière-Sahuqué M
    Neuromuscul Disord; 2004 Mar; 14(3):208-16. PubMed ID: 15036331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization.
    Park H; Park IY; Kim E; Youn B; Fields K; Dunker AK; Kang C
    J Biol Chem; 2004 Apr; 279(17):18026-33. PubMed ID: 14871888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of human calsequestrin: implications for calcium regulation.
    Sanchez EJ; Munske GR; Criswell A; Milting H; Dunker AK; Kang C
    Mol Cell Biochem; 2011 Jul; 353(1-2):195-204. PubMed ID: 21416293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations to Gly2370, Gly2373 or Gly2375 in malignant hyperthermia domain 2 decrease caffeine and cresol sensitivity of the rabbit skeletal-muscle Ca2+-release channel (ryanodine receptor isoform 1).
    Du GG; Oyamada H; Khanna VK; MacLennan DH
    Biochem J; 2001 Nov; 360(Pt 1):97-105. PubMed ID: 11695996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-capacity Ca2+ binding of human skeletal calsequestrin.
    Sanchez EJ; Lewis KM; Danna BR; Kang C
    J Biol Chem; 2012 Mar; 287(14):11592-601. PubMed ID: 22337878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The clinical spectrum of
    Semplicini C; Bertolin C; Bello L; Pantic B; Guidolin F; Vianello S; Catapano F; Colombo I; Moggio M; Gavassini BF; Cenacchi G; Papa V; Previtero M; Calore C; Sorarù G; Minervini G; Tosatto SCE; Stramare R; Pegoraro E
    Neurology; 2018 Oct; 91(17):e1629-e1641. PubMed ID: 30258016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Malignant hyperthermia-associated mutations in the S2-S3 cytoplasmic loop of type 1 ryanodine receptor calcium channel impair calcium-dependent inactivation.
    Gomez AC; Holford TW; Yamaguchi N
    Am J Physiol Cell Physiol; 2016 Nov; 311(5):C749-C757. PubMed ID: 27558158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porcine malignant hyperthermia susceptibility: increased calcium-sequestering activity of skeletal muscle sarcoplasmic reticulum.
    O'Brien PJ
    Can J Vet Res; 1986 Jul; 50(3):329-37. PubMed ID: 3742368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dantrolene sodium increases calcium binding by human recombinant cardiac calsequestrin and calcium loading by sheep cardiac sarcoplasmic reticulum.
    Loescher CM; Gibson LM; Stephenson DG
    Acta Physiol (Oxf); 2019 Jul; 226(3):e13261. PubMed ID: 30710413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling.
    Goonasekera SA; Beard NA; Groom L; Kimura T; Lyfenko AD; Rosenfeld A; Marty I; Dulhunty AF; Dirksen RT
    J Gen Physiol; 2007 Oct; 130(4):365-78. PubMed ID: 17846166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.
    Beard NA; Wei L; Dulhunty AF
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):340-5. PubMed ID: 19278523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.