BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26416891)

  • 21. SERCA1 and calsequestrin storage myopathy: a new surplus protein myopathy.
    Tomelleri G; Palmucci L; Tonin P; Mongini T; Marini M; L'erario R; Rizzuto N; Vattemi G
    Brain; 2006 Aug; 129(Pt 8):2085-92. PubMed ID: 16714317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium Dynamics Mediated by the Endoplasmic/Sarcoplasmic Reticulum and Related Diseases.
    Reddish FN; Miller CL; Gorkhali R; Yang JJ
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28489021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased mitochondrial Ca2+ and decreased sarcoplasmic reticulum Ca2+ in mitochondrial myopathy.
    Aydin J; Andersson DC; Hänninen SL; Wredenberg A; Tavi P; Park CB; Larsson NG; Bruton JD; Westerblad H
    Hum Mol Genet; 2009 Jan; 18(2):278-88. PubMed ID: 18945718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of human cardiac calsequestrin and its deleterious mutants.
    Kim E; Youn B; Kemper L; Campbell C; Milting H; Varsanyi M; Kang C
    J Mol Biol; 2007 Nov; 373(4):1047-57. PubMed ID: 17881003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum.
    Wang S; Trumble WR; Liao H; Wesson CR; Dunker AK; Kang CH
    Nat Struct Biol; 1998 Jun; 5(6):476-83. PubMed ID: 9628486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calsequestrin binds to monomeric and complexed forms of key calcium-handling proteins in native sarcoplasmic reticulum membranes from rabbit skeletal muscle.
    Glover L; Culligan K; Cala S; Mulvey C; Ohlendieck K
    Biochim Biophys Acta; 2001 Dec; 1515(2):120-32. PubMed ID: 11718668
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strenuous exercise triggers a life-threatening response in mice susceptible to malignant hyperthermia.
    Michelucci A; Paolini C; Boncompagni S; Canato M; Reggiani C; Protasi F
    FASEB J; 2017 Aug; 31(8):3649-3662. PubMed ID: 28465322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intralumenal sarcoplasmic reticulum Ca(2+)-binding proteins.
    Cala SE; Scott BT; Jones LR
    Semin Cell Biol; 1990 Aug; 1(4):265-75. PubMed ID: 2103513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of propofol on Ca2+ regulation by malignant hyperthermia-susceptible muscle membranes.
    Fruen BR; Mickelson JR; Roghair TJ; Litterer LA; Louis CF
    Anesthesiology; 1995 May; 82(5):1274-82. PubMed ID: 7741303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC; Fénelon K; Lamboley CR; Stachura D
    J Physiol; 2007 May; 581(Pt 1):319-67. PubMed ID: 17331996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calsequestrin mutant D307H exhibits depressed binding to its protein targets and a depressed response to calcium.
    Houle TD; Ram ML; Cala SE
    Cardiovasc Res; 2004 Nov; 64(2):227-33. PubMed ID: 15485681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased sensitivity of the ryanodine receptor to halothane-induced oligomerization in malignant hyperthermia-susceptible human skeletal muscle.
    Glover L; Heffron JJ; Ohlendieck K
    J Appl Physiol (1985); 2004 Jan; 96(1):11-8. PubMed ID: 12959958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ca2+ signalling and muscle disease.
    MacLennan DH
    Eur J Biochem; 2000 Sep; 267(17):5291-7. PubMed ID: 10951187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequencing of genes involved in the movement of calcium across human skeletal muscle sarcoplasmic reticulum: continuing the search for genes associated with malignant hyperthermia.
    Bjorksten AR; Gillies RL; Hockey BM; Du Sart D
    Anaesth Intensive Care; 2016 Nov; 44(6):762-768. PubMed ID: 27832566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exertional rhabdomyolysis and malignant hyperthermia in a patient with ryanodine receptor type 1 gene, L-type calcium channel alpha-1 subunit gene, and calsequestrin-1 gene polymorphisms.
    Capacchione JF; Sambuughin N; Bina S; Mulligan LP; Lawson TD; Muldoon SM
    Anesthesiology; 2010 Jan; 112(1):239-44. PubMed ID: 20010423
    [No Abstract]   [Full Text] [Related]  

  • 37. Dysferlin interacts with calsequestrin-1, myomesin-2 and dynein in human skeletal muscle.
    Flix B; de la Torre C; Castillo J; Casal C; Illa I; Gallardo E
    Int J Biochem Cell Biol; 2013 Aug; 45(8):1927-38. PubMed ID: 23792176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oligomerization is an intrinsic property of calsequestrin in normal and transformed skeletal muscle.
    Maguire PB; Briggs FN; Lennon NJ; Ohlendieck K
    Biochem Biophys Res Commun; 1997 Nov; 240(3):721-7. PubMed ID: 9398633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The W105G and W99G sorcin mutants demonstrate the role of the D helix in the Ca(2+)-dependent interaction with annexin VII and the cardiac ryanodine receptor.
    Colotti G; Zamparelli C; Verzili D; Mella M; Loughrey CM; Smith GL; Chiancone E
    Biochemistry; 2006 Oct; 45(41):12519-29. PubMed ID: 17029407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Head-to-tail oligomerization of calsequestrin: a novel mechanism for heterogeneous distribution of endoplasmic reticulum luminal proteins.
    Gatti G; Trifari S; Mesaeli N; Parker JM; Michalak M; Meldolesi J
    J Cell Biol; 2001 Aug; 154(3):525-34. PubMed ID: 11489915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.