These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26416969)

  • 1. Human substantia nigra neurons encode decision outcome and are modulated by categorization uncertainty in an auditory categorization task.
    McGovern RA; Chan AK; Mikell CB; Sheehy JP; Ferrera VP; McKhann GM
    Physiol Rep; 2015 Sep; 3(9):. PubMed ID: 26416969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Midbrain Dopamine Neurons Signal Belief in Choice Accuracy during a Perceptual Decision.
    Lak A; Nomoto K; Keramati M; Sakagami M; Kepecs A
    Curr Biol; 2017 Mar; 27(6):821-832. PubMed ID: 28285994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human substantia nigra neurons encode unexpected financial rewards.
    Zaghloul KA; Blanco JA; Weidemann CT; McGill K; Jaggi JL; Baltuch GH; Kahana MJ
    Science; 2009 Mar; 323(5920):1496-9. PubMed ID: 19286561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Substantia Nigra Neurons Encode Reward Expectations.
    Imtiaz Z; Kato A; Kopell BH; Qasim SE; Davis AN; Martinez LN; Heflin M; Kulkarni K; Morsi A; Gu X; Saez I
    bioRxiv; 2024 May; ():. PubMed ID: 38766086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximity of Substantia Nigra Microstimulation to Putative GABAergic Neurons Predicts Modulation of Human Reinforcement Learning.
    Ramayya AG; Pedisich I; Levy D; Lyalenko A; Wanda P; Rizzuto D; Baltuch GH; Kahana MJ
    Front Hum Neurosci; 2017; 11():200. PubMed ID: 28536513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the impact of category uncertainty on human auditory categorization behavior.
    Gifford AM; Cohen YE; Stocker AA
    PLoS Comput Biol; 2014 Jul; 10(7):e1003715. PubMed ID: 25032683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopaminergic drugs modulate learning rates and perseveration in Parkinson's patients in a dynamic foraging task.
    Rutledge RB; Lazzaro SC; Lau B; Myers CE; Gluck MA; Glimcher PW
    J Neurosci; 2009 Dec; 29(48):15104-14. PubMed ID: 19955362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different effects of dopaminergic medication on perceptual decision-making in Parkinson's disease as a function of task difficulty and speed-accuracy instructions.
    Huang YT; Georgiev D; Foltynie T; Limousin P; Speekenbrink M; Jahanshahi M
    Neuropsychologia; 2015 Aug; 75():577-87. PubMed ID: 26184442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological evidence for functionally distinct neuronal populations in the human substantia nigra.
    Ramayya AG; Zaghloul KA; Weidemann CT; Baltuch GH; Kahana MJ
    Front Hum Neurosci; 2014; 8():655. PubMed ID: 25249957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-methyl-D-aspartate receptor blockade attenuates D1 dopamine receptor modulation of neuronal activity in rat substantia nigra.
    Huang KX; Bergstrom DA; Ruskin DN; Walters JR
    Synapse; 1998 Sep; 30(1):18-29. PubMed ID: 9704877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct representations of cognitive and motivational signals in midbrain dopamine neurons.
    Matsumoto M; Takada M
    Neuron; 2013 Sep; 79(5):1011-24. PubMed ID: 23932490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast transmission from the dopaminergic ventral midbrain to the sensory cortex of awake primates.
    Mylius J; Happel MF; Gorkin AG; Huang Y; Scheich H; Brosch M
    Brain Struct Funct; 2015 Nov; 220(6):3273-94. PubMed ID: 25084746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choice-correlated activity fluctuations underlie learning of neuronal category representation.
    Engel TA; Chaisangmongkon W; Freedman DJ; Wang XJ
    Nat Commun; 2015 Mar; 6():6454. PubMed ID: 25759251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the neural basis of uncertainty in perceptual category learning through varying levels of distortion.
    Daniel R; Wagner G; Koch K; Reichenbach JR; Sauer H; Schlösser RG
    J Cogn Neurosci; 2011 Jul; 23(7):1781-93. PubMed ID: 20617884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neural representation of categorization uncertainty in the human brain.
    Grinband J; Hirsch J; Ferrera VP
    Neuron; 2006 Mar; 49(5):757-63. PubMed ID: 16504950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural networks underlying the metacognitive uncertainty response.
    Paul EJ; Smith JD; Valentin VV; Turner BO; Barbey AK; Ashby FG
    Cortex; 2015 Oct; 71():306-22. PubMed ID: 26291663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Midbrain dopamine neurons encode decisions for future action.
    Morris G; Nevet A; Arkadir D; Vaadia E; Bergman H
    Nat Neurosci; 2006 Aug; 9(8):1057-63. PubMed ID: 16862149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.