These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 26416980)

  • 1. The Roles of Compensatory Evolution and Constraint in Aminoacyl tRNA Synthetase Evolution.
    Adrion JR; White PS; Montooth KL
    Mol Biol Evol; 2016 Jan; 33(1):152-61. PubMed ID: 26416980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel loss of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases and mtDNA-encoded tRNAs in Cnidaria.
    Haen KM; Pett W; Lavrov DV
    Mol Biol Evol; 2010 Oct; 27(10):2216-9. PubMed ID: 20439315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytonuclear Interactions in the Evolution of Animal Mitochondrial tRNA Metabolism.
    Pett W; Lavrov DV
    Genome Biol Evol; 2015 Jun; 7(8):2089-101. PubMed ID: 26116918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxed sequence constraints favor mutational freedom in idiosyncratic metazoan mitochondrial tRNAs.
    Kuhle B; Chihade J; Schimmel P
    Nat Commun; 2020 Feb; 11(1):969. PubMed ID: 32080176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rewiring of Aminoacyl-tRNA Synthetase Localization and Interactions in Plants With Extensive Mitochondrial tRNA Gene Loss.
    Warren JM; Broz AK; Martinez-Hottovy A; Elowsky C; Christensen AC; Sloan DB
    Mol Biol Evol; 2023 Jul; 40(7):. PubMed ID: 37463427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Mutations of Mitochondrial Aminoacyl-tRNA Synthetases Genes on Epileptogenesis.
    Kong LY; Wu YZ; Cheng RQ; Wang PH; Peng BW
    Mol Neurobiol; 2023 Sep; 60(9):5482-5492. PubMed ID: 37316759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Roles of Mutation, Selection, and Expression in Determining Relative Rates of Evolution in Mitochondrial versus Nuclear Genomes.
    Havird JC; Sloan DB
    Mol Biol Evol; 2016 Dec; 33(12):3042-3053. PubMed ID: 27563053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quality control of translation through the kinetic discrimination of tRNAs in the network of aminoacyl-tRNA synthetases.
    Shimada N; Matsuzaki K; Suzuki T; Suzuki T; Watanabe K
    Nucleic Acids Res Suppl; 2002; (2):79-80. PubMed ID: 12903114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aminoacyl-tRNA Synthetase Evolution within the Dynamic Tripartite Translation System of Plant Cells.
    Sloan DB; DeTar RA; Warren JM
    Genome Biol Evol; 2023 Apr; 15(4):. PubMed ID: 36951086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Incompatibility between a mitochondrial tRNA and its nuclear-encoded tRNA synthetase compromises development and fitness in Drosophila.
    Meiklejohn CD; Holmbeck MA; Siddiq MA; Abt DN; Rand DM; Montooth KL
    PLoS Genet; 2013; 9(1):e1003238. PubMed ID: 23382693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial aminoacyl-tRNA synthetase disorders: an emerging group of developmental disorders of myelination.
    Fine AS; Nemeth CL; Kaufman ML; Fatemi A
    J Neurodev Disord; 2019 Dec; 11(1):29. PubMed ID: 31839000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial-nuclear interactions: compensatory evolution or variable functional constraint among vertebrate oxidative phosphorylation genes?
    Zhang F; Broughton RE
    Genome Biol Evol; 2013; 5(10):1781-91. PubMed ID: 23995460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Handling mammalian mitochondrial tRNAs and aminoacyl-tRNA synthetases for functional and structural characterization.
    Sissler M; Lorber B; Messmer M; Schaller A; Pütz J; Florentz C
    Methods; 2008 Feb; 44(2):176-89. PubMed ID: 18241799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intra-protein compensatory mutations analysis highlights the tRNA recognition regions in aminoacyl-tRNA synthetases.
    Frenkel-Morgenstern M; Tworowski D; Klipcan L; Safro M
    J Biomol Struct Dyn; 2009 Oct; 27(2):115-26. PubMed ID: 19583438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The aminoacyl-tRNA synthetases of Drosophila melanogaster.
    Lu J; Marygold SJ; Gharib WH; Suter B
    Fly (Austin); 2015; 9(2):53-61. PubMed ID: 26761199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Mitochondrial Aminoacyl-tRNA Synthetases and Disease.
    Sissler M; González-Serrano LE; Westhof E
    Trends Mol Med; 2017 Aug; 23(8):693-708. PubMed ID: 28716624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases.
    Suzuki T; Nagao A; Suzuki T
    Annu Rev Genet; 2011; 45():299-329. PubMed ID: 21910628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short peptides from leucyl-tRNA synthetase rescue disease-causing mitochondrial tRNA point mutations.
    Perli E; Fiorillo A; Giordano C; Pisano A; Montanari A; Grazioli P; Campese AF; Di Micco P; Tuppen HA; Genovese I; Poser E; Preziuso C; Taylor RW; Morea V; Colotti G; d'Amati G
    Hum Mol Genet; 2016 Mar; 25(5):903-15. PubMed ID: 26721932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two proteomic methodologies for defining N-termini of mature human mitochondrial aminoacyl-tRNA synthetases.
    Carapito C; Kuhn L; Karim L; Rompais M; Rabilloud T; Schwenzer H; Sissler M
    Methods; 2017 Jan; 113():111-119. PubMed ID: 27793688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene recruitment--a common mechanism in the evolution of transfer RNA gene families.
    Wang X; Lavrov DV
    Gene; 2011 Apr; 475(1):22-9. PubMed ID: 21195140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.