These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 26417081)
1. Glycan modulation and sulfoengineering of anti-HIV-1 monoclonal antibody PG9 in plants. Loos A; Gach JS; Hackl T; Maresch D; Henkel T; Porodko A; Bui-Minh D; Sommeregger W; Wozniak-Knopp G; Forthal DN; Altmann F; Steinkellner H; Mach L Proc Natl Acad Sci U S A; 2015 Oct; 112(41):12675-80. PubMed ID: 26417081 [TBL] [Abstract][Full Text] [Related]
2. Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous beta1,4-galactosylated N-glycan profile. Strasser R; Castilho A; Stadlmann J; Kunert R; Quendler H; Gattinger P; Jez J; Rademacher T; Altmann F; Mach L; Steinkellner H J Biol Chem; 2009 Jul; 284(31):20479-85. PubMed ID: 19478090 [TBL] [Abstract][Full Text] [Related]
3. Fc-glycosylation influences Fcγ receptor binding and cell-mediated anti-HIV activity of monoclonal antibody 2G12. Forthal DN; Gach JS; Landucci G; Jez J; Strasser R; Kunert R; Steinkellner H J Immunol; 2010 Dec; 185(11):6876-82. PubMed ID: 21041724 [TBL] [Abstract][Full Text] [Related]
4. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Strasser R; Stadlmann J; Schähs M; Stiegler G; Quendler H; Mach L; Glössl J; Weterings K; Pabst M; Steinkellner H Plant Biotechnol J; 2008 May; 6(4):392-402. PubMed ID: 18346095 [TBL] [Abstract][Full Text] [Related]
5. CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose. Jansing J; Sack M; Augustine SM; Fischer R; Bortesi L Plant Biotechnol J; 2019 Feb; 17(2):350-361. PubMed ID: 29969180 [TBL] [Abstract][Full Text] [Related]
6. The human anti-HIV antibodies 2F5, 2G12, and PG9 differ in their susceptibility to proteolytic degradation: down-regulation of endogenous serine and cysteine proteinase activities could improve antibody production in plant-based expression platforms. Niemer M; Mehofer U; Torres Acosta JA; Verdianz M; Henkel T; Loos A; Strasser R; Maresch D; Rademacher T; Steinkellner H; Mach L Biotechnol J; 2014 Apr; 9(4):493-500. PubMed ID: 24478053 [TBL] [Abstract][Full Text] [Related]
7. Rapid high-level production of functional HIV broadly neutralizing monoclonal antibodies in transient plant expression systems. Rosenberg Y; Sack M; Montefiori D; Forthal D; Mao L; Hernandez-Abanto S; Urban L; Landucci G; Fischer R; Jiang X PLoS One; 2013; 8(3):e58724. PubMed ID: 23533588 [TBL] [Abstract][Full Text] [Related]
8. Fragments of the V1/V2 domain of HIV-1 glycoprotein 120 engineered for improved binding to the broadly neutralizing PG9 antibody. Morales JF; Yu B; Perez G; Mesa KA; Alexander DL; Berman PW Mol Immunol; 2016 Sep; 77():14-25. PubMed ID: 27449907 [TBL] [Abstract][Full Text] [Related]
9. Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody. Sainsbury F; Sack M; Stadlmann J; Quendler H; Fischer R; Lomonossoff GP PLoS One; 2010 Nov; 5(11):e13976. PubMed ID: 21103044 [TBL] [Abstract][Full Text] [Related]
10. Influence of elastin-like peptide fusions on the quantity and quality of a tobacco-derived human immunodeficiency virus-neutralizing antibody. Floss DM; Sack M; Arcalis E; Stadlmann J; Quendler H; Rademacher T; Stoger E; Scheller J; Fischer R; Conrad U Plant Biotechnol J; 2009 Dec; 7(9):899-913. PubMed ID: 19843249 [TBL] [Abstract][Full Text] [Related]
11. Variable loop glycan dependency of the broad and potent HIV-1-neutralizing antibodies PG9 and PG16. Doores KJ; Burton DR J Virol; 2010 Oct; 84(20):10510-21. PubMed ID: 20686044 [TBL] [Abstract][Full Text] [Related]
12. The neutralization properties of a HIV-specific antibody are markedly altered by glycosylation events outside the antigen-binding domain. Miranda LR; Duval M; Doherty H; Seaman MS; Posner MR; Cavacini LA J Immunol; 2007 Jun; 178(11):7132-8. PubMed ID: 17513762 [TBL] [Abstract][Full Text] [Related]
13. Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1. Pejchal R; Walker LM; Stanfield RL; Phogat SK; Koff WC; Poignard P; Burton DR; Wilson IA Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11483-8. PubMed ID: 20534513 [TBL] [Abstract][Full Text] [Related]
14. N-Glycosylation Design and Control of Therapeutic Monoclonal Antibodies. Sha S; Agarabi C; Brorson K; Lee DY; Yoon S Trends Biotechnol; 2016 Oct; 34(10):835-846. PubMed ID: 27016033 [TBL] [Abstract][Full Text] [Related]
15. A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits. Jin C; Altmann F; Strasser R; Mach L; Schähs M; Kunert R; Rademacher T; Glössl J; Steinkellner H Glycobiology; 2008 Mar; 18(3):235-41. PubMed ID: 18203810 [TBL] [Abstract][Full Text] [Related]
16. Identification of two subtilisin-like serine proteases engaged in the degradation of recombinant proteins in Nicotiana benthamiana. Puchol Tarazona AA; Maresch D; Grill A; Bakalarz J; Torres Acosta JA; Castilho A; Steinkellner H; Mach L FEBS Lett; 2021 Feb; 595(3):379-388. PubMed ID: 33263189 [TBL] [Abstract][Full Text] [Related]
17. Anti-V3/Glycan and Anti-MPER Neutralizing Antibodies, but Not Anti-V2/Glycan Site Antibodies, Are Strongly Associated with Greater Anti-HIV-1 Neutralization Breadth and Potency. Jacob RA; Moyo T; Schomaker M; Abrahams F; Grau Pujol B; Dorfman JR J Virol; 2015 May; 89(10):5264-75. PubMed ID: 25673728 [TBL] [Abstract][Full Text] [Related]
18. Broadly Neutralizing Antibodies Display Potential for Prevention of HIV-1 Infection of Mucosal Tissue Superior to That of Nonneutralizing Antibodies. Cheeseman HM; Olejniczak NJ; Rogers PM; Evans AB; King DFL; Ziprin P; Liao HX; Haynes BF; Shattock RJ J Virol; 2017 Jan; 91(1):. PubMed ID: 27795431 [TBL] [Abstract][Full Text] [Related]
19. Steric Accessibility of the Cleavage Sites Dictates the Proteolytic Vulnerability of the Anti-HIV-1 Antibodies 2F5, 2G12, and PG9 in Plants. Puchol Tarazona AA; Lobner E; Taubenschmid Y; Paireder M; Torres Acosta JA; Göritzer K; Steinkellner H; Mach L Biotechnol J; 2020 Mar; 15(3):e1900308. PubMed ID: 31657528 [TBL] [Abstract][Full Text] [Related]
20. Tyrosine O-sulfation proteoforms affect HIV-1 monoclonal antibody potency. Cai CX; Doria-Rose NA; Schneck NA; Ivleva VB; Tippett B; Shadrick WR; O'Connell S; Cooper JW; Schneiderman Z; Zhang B; Gowetski DB; Blackstock D; Demirji J; Lin BC; Gorman J; Liu T; Li Y; McDermott AB; Kwong PD; Carlton K; Gall JG; Lei QP Sci Rep; 2022 May; 12(1):8433. PubMed ID: 35589938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]