BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26417244)

  • 41. From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production.
    Novy V; Longus K; Nidetzky B
    Biotechnol Biofuels; 2015; 8():46. PubMed ID: 25883680
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strategies of xylanase supplementation for an efficient saccharification and cofermentation process from pretreated wheat straw.
    Alvira P; Tomás-Pejó E; Negro MJ; Ballesteros M
    Biotechnol Prog; 2011 Jul; 27(4):944-50. PubMed ID: 21567993
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cellulase Enzyme Production from Filamentous Fungi
    Naher L; Fatin SN; Sheikh MAH; Azeez LA; Siddiquee S; Zain NM; Karim SMR
    J Fungi (Basel); 2021 Oct; 7(10):. PubMed ID: 34682288
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source.
    Kogo T; Yoshida Y; Koganei K; Matsumoto H; Watanabe T; Ogihara J; Kasumi T
    Bioresour Technol; 2017 Jun; 233():67-73. PubMed ID: 28258998
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct bioethanol production from wheat straw using xylose/glucose co-fermentation by co-culture of two recombinant yeasts.
    Zhang Y; Wang C; Wang L; Yang R; Hou P; Liu J
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):453-464. PubMed ID: 28101807
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of pretreatment severity in continuous steam explosion on enzymatic conversion of wheat straw: Evidence from kinetic analysis of hydrolysis time courses.
    Monschein M; Nidetzky B
    Bioresour Technol; 2016 Jan; 200():287-96. PubMed ID: 26496218
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of Bioethanol Production by
    Zheng J; Negi A; Khomlaem C; Kim BS
    J Microbiol Biotechnol; 2019 Jun; 29(6):905-912. PubMed ID: 31154746
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigation of a robust pretreatment technique based on ultrasound-assisted, cost-effective ionic liquid for enhancing saccharification and bioethanol production from wheat straw.
    Ziaei-Rad Z; Pazouki M; Fooladi J; Azin M; Gummadi SN; Allahverdi A
    Sci Rep; 2023 Jan; 13(1):446. PubMed ID: 36624114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced biomass delignification and enzymatic saccharification of canola straw by steam-explosion pretreatment.
    Garmakhany AD; Kashaninejad M; Aalami M; Maghsoudlou Y; Khomieri M; Tabil LG
    J Sci Food Agric; 2014 Jun; 94(8):1607-13. PubMed ID: 24186725
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production.
    Liu G; Zhang Q; Li H; Qureshi AS; Zhang J; Bao X; Bao J
    Biotechnol Bioeng; 2018 Jan; 115(1):60-69. PubMed ID: 28865124
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Autohydrolysis pretreatment of waste wheat straw for cellulosic ethanol production in a co-located straw pulp mill.
    Han Q; Jin Y; Jameel H; Chang HM; Phillips R; Park S
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1193-210. PubMed ID: 25374142
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced enzymatic hydrolysis of waste paper for ethanol production using separate saccharification and fermentation.
    Guerfali M; Saidi A; Gargouri A; Belghith H
    Appl Biochem Biotechnol; 2015 Jan; 175(1):25-42. PubMed ID: 25234398
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioethanol production from wheat straw via enzymatic route employing Penicillium janthinellum cellulases.
    Singhania RR; Saini JK; Saini R; Adsul M; Mathur A; Gupta R; Tuli DK
    Bioresour Technol; 2014 Oct; 169():490-495. PubMed ID: 25086433
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator.
    Zhang X; Li Y; Zhao X; Bai F
    Bioresour Technol; 2017 Jan; 223():317-322. PubMed ID: 27818160
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of pH on cellulase production of Trichoderma reesei RUT C30.
    Juhász T; Szengyel Z; Szijártó N; Réczey K
    Appl Biochem Biotechnol; 2004; 113-116():201-11. PubMed ID: 15054207
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment.
    Yuan Z; Wen Y; Li G
    Bioresour Technol; 2018 Jul; 259():228-236. PubMed ID: 29567594
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cellulase production and saccharification of rice straw by the mutant strain Hypocrea koningii RSC1.
    Palaniyandi SA; Yang SH; Suh JW
    J Basic Microbiol; 2014 Jan; 54(1):56-65. PubMed ID: 23775722
    [TBL] [Abstract][Full Text] [Related]  

  • 58. White-rot fungal pretreatment of wheat straw with Phanerochaete chrysosporium for biohydrogen production: simultaneous saccharification and fermentation.
    Zhi Z; Wang H
    Bioprocess Biosyst Eng; 2014 Jul; 37(7):1447-58. PubMed ID: 24429553
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cellulase hyper-production by
    Li C; Lin F; Zhou L; Qin L; Li B; Zhou Z; Jin M; Chen Z
    Biotechnol Biofuels; 2017; 10():228. PubMed ID: 29034003
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ethanol production from cellulose by coupled saccharification/fermentation using Saccharomyces cerevisiae and cellulase complex from Sclerotium rolfsii UV-8 mutant.
    Deshpande MV
    Appl Biochem Biotechnol; 1992 Sep; 36(3):227-34. PubMed ID: 1288411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.