BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 26417380)

  • 1. Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics.
    Liu X; Wang R; Li Y; Song D
    Comput Math Methods Med; 2015; 2015():598415. PubMed ID: 26417380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electromechanical based deformable model for soft tissue simulation.
    Zhong Y; Shirinzadeh B; Smith J; Gu C
    Artif Intell Med; 2009 Nov; 47(3):275-88. PubMed ID: 19819116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach.
    Rausch MK; Karniadakis GE; Humphrey JD
    Biomech Model Mechanobiol; 2017 Feb; 16(1):249-261. PubMed ID: 27538848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting parameters.
    Chanthasopeephan T; Desai JP; Lau AC
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):349-59. PubMed ID: 17355046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Present and future developments of the virtual surgery and tele-virtual surgery system].
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Otake Y; Kobayashi S; Hashizume M
    Nihon Rinsho; 2004 Apr; 62(4):815-23. PubMed ID: 15106354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.
    Ottensmeyer MP; Ben-Ur E; Salisbury JK
    Stud Health Technol Inform; 2000; 70():236-42. PubMed ID: 10977548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Haptic Interactive Approach to Simulation of Surgery Cutting Based on Mesh and Meshless Models.
    Cheng Q; Liu PX; Lai P; Xu S; Zou Y
    J Healthc Eng; 2018; 2018():9204949. PubMed ID: 29850006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.
    Zhang J; Zhong Y; Gu C
    Med Biol Eng Comput; 2018 Dec; 56(12):2163-2176. PubMed ID: 29845488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling biologic soft tissues for haptic feedback with an hybrid multiresolution method.
    Frisoli A; Borelli L; Bergamasco M
    Stud Health Technol Inform; 2005; 111():145-8. PubMed ID: 15718716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breaking the state of the heart: meshless model for cardiac mechanics.
    Lluch È; De Craene M; Bijnens B; Sermesant M; Noailly J; Camara O; Morales HG
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1549-1561. PubMed ID: 31161351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle-based model to simulate the micromechanics of biological cells.
    Van Liedekerke P; Tijskens E; Ramon H; Ghysels P; Samaey G; Roose D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061906. PubMed ID: 20866439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time volumetric deformation for surgical simulation using force feedback device.
    Wakai S; Suzuki N; Hattori A; Suzuki S; Uchiyama A
    Stud Health Technol Inform; 2003; 94():386-8. PubMed ID: 15455930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realistic soft tissue deformation strategies for real time surgery simulation.
    Shen Y; Zhou X; Zhang N; Tamma K; Sweet R
    Stud Health Technol Inform; 2008; 132():457-9. PubMed ID: 18391343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs.
    Hieber SE; Walther JH; Koumoutsakos P
    Technol Health Care; 2004; 12(4):305-14. PubMed ID: 15502281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a maxillofacial virtual surgical system based on biomechanical parameters of facial soft tissue.
    Cheng M; Zhuang Y; Zhao H; Li M; Fan L; Yu H
    Int J Comput Assist Radiol Surg; 2022 Jul; 17(7):1201-1211. PubMed ID: 35569066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of in-vivo force response of intra-abdominal soft tissues for surgical simulation.
    Tay BK; Stylopoulos N; De S; Rattner DW; Srinivasan MA
    Stud Health Technol Inform; 2002; 85():514-9. PubMed ID: 15458143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual surgery simulation for medical training using multi-resolution organ models.
    Kim J; Choi C; De S; Srinivasan MA
    Int J Med Robot; 2007 Jun; 3(2):149-58. PubMed ID: 17619246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction model between elastic objects for haptic feedback considering collisions of soft tissue.
    Kuroda Y; Nakao M; Kuroda T; Oyama H; Komori M
    Comput Methods Programs Biomed; 2005 Dec; 80(3):216-24. PubMed ID: 16226827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time volume haptic rendering of non-linear viscoelastic behavior of soft tissue through dynamic atomic unit approach.
    Chanda A; Kesavadas T
    Stud Health Technol Inform; 2004; 98():49-55. PubMed ID: 15544241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.