These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 26417647)
1. Modulation of Lactobacillus casei bacteriophage A2 lytic/lysogenic cycles by binding of Gp25 to the early lytic mRNA. Carrasco B; Escobedo S; Alonso JC; Suárez JE Mol Microbiol; 2016 Jan; 99(2):328-37. PubMed ID: 26417647 [TBL] [Abstract][Full Text] [Related]
2. Differential expression of cro, the lysogenic cycle repressor determinant of bacteriophage A2, in Lactobacillus casei and Escherichia coli. Escobedo S; Rodríguez I; García P; Suárez JE; Carrasco B Virus Res; 2014 Apr; 183():63-6. PubMed ID: 24457071 [TBL] [Abstract][Full Text] [Related]
3. Cooperative interaction of CI protein regulates lysogeny of Lactobacillus casei by bacteriophage A2. García P; Ladero V; Alonso JC; Suárez JE J Virol; 1999 May; 73(5):3920-9. PubMed ID: 10196287 [TBL] [Abstract][Full Text] [Related]
4. Interaction of the Cro repressor with the lysis/lysogeny switch of the Lactobacillus casei temperate bacteriophage A2. Ladero V; García P; Alonso JC; Suárez JE J Gen Virol; 2002 Nov; 83(Pt 11):2891-2895. PubMed ID: 12388825 [TBL] [Abstract][Full Text] [Related]
5. A2 cro, the lysogenic cycle repressor, specifically binds to the genetic switch region of Lactobacillus casei bacteriophage A2. Ladero V; García P; Alonso JC; Suárez JE Virology; 1999 Sep; 262(1):220-9. PubMed ID: 10489355 [TBL] [Abstract][Full Text] [Related]
7. The Developmental Switch in Bacteriophage λ: A Critical Role of the Cro Protein. Lee S; Lewis DEA; Adhya S J Mol Biol; 2018 Jan; 430(1):58-68. PubMed ID: 29158090 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the genetic switch and replication region of a P335-type bacteriophage with an obligate lytic lifestyle on Lactococcus lactis. Madsen SM; Mills D; Djordjevic G; Israelsen H; Klaenhammer TR Appl Environ Microbiol; 2001 Mar; 67(3):1128-39. PubMed ID: 11229902 [TBL] [Abstract][Full Text] [Related]
9. Cro's role in the CI Cro bistable switch is critical for {lambda}'s transition from lysogeny to lytic development. Schubert RA; Dodd IB; Egan JB; Shearwin KE Genes Dev; 2007 Oct; 21(19):2461-72. PubMed ID: 17908932 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional analysis of the genetic elements involved in the lysogeny/lysis switch in the temperate lactococcal bacteriophage phiLC3, and identification of the Cro-like protein ORF76. Blatny JM; Ventura M; Rosenhaven EM; Risøen PA; Lunde M; Brüssow H; Nes IF Mol Genet Genomics; 2003 Jul; 269(4):487-98. PubMed ID: 12759744 [TBL] [Abstract][Full Text] [Related]
11. Commitment to lysogeny is preceded by a prolonged period of sensitivity to the late lytic regulator Q in bacteriophage λ. Svenningsen SL; Semsey S J Bacteriol; 2014 Oct; 196(20):3582-8. PubMed ID: 25092034 [TBL] [Abstract][Full Text] [Related]
12. Repeated outbreaks drive the evolution of bacteriophage communication. Doekes HM; Mulder GA; Hermsen R Elife; 2021 Jan; 10():. PubMed ID: 33459590 [TBL] [Abstract][Full Text] [Related]
13. Binding Specificities of the Telomere Phage ϕKO2 Prophage Repressor CB and Lytic Repressor Cro. Hammerl JA; Jäckel C; Lanka E; Roschanski N; Hertwig S Viruses; 2016 Aug; 8(8):. PubMed ID: 27527206 [TBL] [Abstract][Full Text] [Related]
14. Evidence for frequent lysogeny in lactobacilli: temperate bacteriophages within the subgenus Streptobacterium. Stetter KO J Virol; 1977 Nov; 24(2):685-9. PubMed ID: 916033 [TBL] [Abstract][Full Text] [Related]
15. The Molecular Switch of Telomere Phages: High Binding Specificity of the PY54 Cro Lytic Repressor to a Single Operator Site. Hammerl JA; Roschanski N; Lurz R; Johne R; Lanka E; Hertwig S Viruses; 2015 Jun; 7(6):2771-93. PubMed ID: 26043380 [TBL] [Abstract][Full Text] [Related]
16. Quorum Sensing and Metabolic State of the Host Control Lysogeny-Lysis Switch of Bacteriophage T1. Laganenka L; Sander T; Lagonenko A; Chen Y; Link H; Sourjik V mBio; 2019 Sep; 10(5):. PubMed ID: 31506310 [TBL] [Abstract][Full Text] [Related]
17. A fast PCR-based method for the characterization of prophage profiles in strains of the Lactobacillus casei group. Zaburlin D; Mercanti DJ; Quiberoni A J Virol Methods; 2017 Oct; 248():226-233. PubMed ID: 28757387 [TBL] [Abstract][Full Text] [Related]
18. Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis. Dieterle ME; Bowman C; Batthyany C; Lanzarotti E; Turjanski A; Hatfull G; Piuri M Appl Environ Microbiol; 2014 Nov; 80(22):7107-21. PubMed ID: 25217012 [TBL] [Abstract][Full Text] [Related]
19. Studies on the gene regulation involved in the lytic-lysogenic switch in Staphylococcus aureus temperate bacteriophage Phi11. Das A; Mandal S; Hemmadi V; Ratre V; Biswas M J Biochem; 2020 Dec; 168(6):659-668. PubMed ID: 32702081 [TBL] [Abstract][Full Text] [Related]
20. Complete genomic sequence of the temperate bacteriophage PhiAT3 isolated from Lactobacillus casei ATCC 393. Lo TC; Shih TC; Lin CF; Chen HW; Lin TH Virology; 2005 Aug; 339(1):42-55. PubMed ID: 15975621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]