These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26417678)

  • 1. Dependence on epiphytic bacteria for freezing protection in an Antarctic moss, Bryum argenteum.
    Raymond JA
    Environ Microbiol Rep; 2016 Feb; 8(1):14-9. PubMed ID: 26417678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria.
    Mangiagalli M; Bar-Dolev M; Tedesco P; Natalello A; Kaleda A; Brocca S; de Pascale D; Pucciarelli S; Miceli C; Braslavsky I; Lotti M
    FEBS J; 2017 Jan; 284(1):163-177. PubMed ID: 27860412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ice-Binding Proteins Associated with an Antarctic Cyanobacterium,
    Raymond JA; Janech MG; Mangiagalli M
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33158891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-decadal survival of an Antarctic nematode, Plectus murrayi, in a -20°C stored moss sample.
    Kagoshima H; Kito K; Aizu T; Shin-i T; Kanda H; Kobayashi S; Toyoda A; Fujiyama A; Kohara Y; Convey P; Niki H
    Cryo Letters; 2012; 33(4):280-8. PubMed ID: 22987239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties and biotechnological applications of ice-binding proteins in bacteria.
    Cid FP; Rilling JI; Graether SP; Bravo LA; Mora Mde L; Jorquera MA
    FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes.
    Oh HN; Park D; Seong HJ; Kim D; Sul WJ
    J Microbiol; 2019 Oct; 57(10):865-873. PubMed ID: 31571125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct molecular features facilitating ice-binding mechanisms in hyperactive antifreeze proteins closely related to an Antarctic sea ice bacterium.
    Banerjee R; Chakraborti P; Bhowmick R; Mukhopadhyay S
    J Biomol Struct Dyn; 2015; 33(7):1424-41. PubMed ID: 25190099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic.
    Varin T; Lovejoy C; Jungblut AD; Vincent WF; Corbeil J
    Appl Environ Microbiol; 2012 Jan; 78(2):549-59. PubMed ID: 22081564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple colonization and dispersal events hide the early origin and induce a lack of genetic structure of the moss
    Zaccara S; Patiño J; Convey P; Vanetti I; Cannone N
    Ecol Evol; 2020 Aug; 10(16):8959-8975. PubMed ID: 32884671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv.
    John UP; Polotnianka RM; Sivakumaran KA; Chew O; Mackin L; Kuiper MJ; Talbot JP; Nugent GD; Mautord J; Schrauf GE; Spangenberg GC
    Plant Cell Environ; 2009 Apr; 32(4):336-48. PubMed ID: 19143989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antarctic ice core samples: culturable bacterial diversity.
    Shivaji S; Begum Z; Shiva Nageswara Rao SS; Vishnu Vardhan Reddy PV; Manasa P; Sailaja B; Prathiba MS; Thamban M; Krishnan KP; Singh SM; Srinivas TN
    Res Microbiol; 2013 Jan; 164(1):70-82. PubMed ID: 23041141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ice-binding proteins from the fungus Antarctomyces psychrotrophicus possibly originate from two different bacteria through horizontal gene transfer.
    Arai T; Fukami D; Hoshino T; Kondo H; Tsuda S
    FEBS J; 2019 Mar; 286(5):946-962. PubMed ID: 30548092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze avoidance: a dehydrating moss gathers no ice.
    Lenné T; Bryant G; Hocart CH; Huang CX; Ball MC
    Plant Cell Environ; 2010 Oct; 33(10):1731-41. PubMed ID: 20525002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms.
    Raymond JA; Fritsen CH
    Cryobiology; 2001 Aug; 43(1):63-70. PubMed ID: 11812052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Search for psychrophilic methylotrophic bacteria in biotopes of the Antarctica].
    Romanovskaia VA; Shilin SO; Chernaia NA; Tashirev AB; Malashenko IuR; Rokitko PV
    Mikrobiol Z; 2005; 67(3):3-8. PubMed ID: 16018200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple ice-binding proteins of probable prokaryotic origin in an Antarctic lake alga, Chlamydomonas sp. ICE-MDV (Chlorophyceae).
    Raymond JA; Morgan-Kiss R
    J Phycol; 2017 Aug; 53(4):848-854. PubMed ID: 28543018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ice-binding and tandem beta-sandwich domain-containing protein in Shewanella frigidimarina is a potential new type of ice adhesin.
    Vance TDR; Graham LA; Davies PL
    FEBS J; 2018 Apr; 285(8):1511-1527. PubMed ID: 29498209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial population index and community structure in saline-alkaline soil using gene targeted metagenomics.
    Keshri J; Mishra A; Jha B
    Microbiol Res; 2013 Mar; 168(3):165-73. PubMed ID: 23083746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening of plant resources with anti-ice nucleation activity for frost damage prevention.
    Suzuki S; Fukuda S; Fukushi Y; Arakawa K
    Biosci Biotechnol Biochem; 2017 Nov; 81(11):2090-2097. PubMed ID: 28942726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a novel ice-nucleating bacterium of Antarctic origin and its ice nucleation properties.
    Obata H; Muryoi N; Kawahara H; Yamade K; Nishikawa J
    Cryobiology; 1999 Mar; 38(2):131-9. PubMed ID: 10191036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.