These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The TMEFF2 tumor suppressor modulates integrin expression, RhoA activation and migration of prostate cancer cells. Chen X; Corbin JM; Tipton GJ; Yang LV; Asch AS; Ruiz-Echevarría MJ Biochim Biophys Acta; 2014 Jun; 1843(6):1216-24. PubMed ID: 24632071 [TBL] [Abstract][Full Text] [Related]
3. Genetic deletion of osteopontin in TRAMP mice skews prostate carcinogenesis from adenocarcinoma to aggressive human-like neuroendocrine cancers. Mauri G; Jachetti E; Comuzzi B; Dugo M; Arioli I; Miotti S; Sangaletti S; Di Carlo E; Tripodo C; Colombo MP Oncotarget; 2016 Jan; 7(4):3905-20. PubMed ID: 26700622 [TBL] [Abstract][Full Text] [Related]
4. Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Chiaverotti T; Couto SS; Donjacour A; Mao JH; Nagase H; Cardiff RD; Cunha GR; Balmain A Am J Pathol; 2008 Jan; 172(1):236-46. PubMed ID: 18156212 [TBL] [Abstract][Full Text] [Related]
5. Loss of MyD88 leads to more aggressive TRAMP prostate cancer and influences tumor infiltrating lymphocytes. Peek EM; Song W; Zhang H; Huang J; Chin AI Prostate; 2015 Apr; 75(5):463-73. PubMed ID: 25597486 [TBL] [Abstract][Full Text] [Related]
6. Deletion of p21/Cdkn1a confers protective effect against prostate tumorigenesis in transgenic adenocarcinoma of the mouse prostate model. Jain AK; Raina K; Agarwal R Cell Cycle; 2013 May; 12(10):1598-604. PubMed ID: 23624841 [TBL] [Abstract][Full Text] [Related]
7. An investigation of the effects of late-onset dietary restriction on prostate cancer development in the TRAMP mouse. Suttie AW; Dinse GE; Nyska A; Moser GJ; Goldsworthy TL; Maronpot RR Toxicol Pathol; 2005; 33(3):386-97. PubMed ID: 15805078 [TBL] [Abstract][Full Text] [Related]
8. TMEFF2 and SARDH cooperate to modulate one-carbon metabolism and invasion of prostate cancer cells. Green T; Chen X; Ryan S; Asch AS; Ruiz-Echevarría MJ Prostate; 2013 Oct; 73(14):1561-75. PubMed ID: 23824605 [TBL] [Abstract][Full Text] [Related]
9. A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Masumori N; Thomas TZ; Chaurand P; Case T; Paul M; Kasper S; Caprioli RM; Tsukamoto T; Shappell SB; Matusik RJ Cancer Res; 2001 Mar; 61(5):2239-49. PubMed ID: 11280793 [TBL] [Abstract][Full Text] [Related]
10. Glutathione Peroxidase 3 Inhibits Prostate Tumorigenesis in TRAMP Mice. Chang SN; Lee JM; Oh H; Park JH Prostate; 2016 Nov; 76(15):1387-98. PubMed ID: 27325372 [TBL] [Abstract][Full Text] [Related]
11. Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model: A good alternative to study PCa progression and chemoprevention approaches. Kido LA; de Almeida Lamas C; Maróstica MR; Cagnon VHA Life Sci; 2019 Jan; 217():141-147. PubMed ID: 30528182 [TBL] [Abstract][Full Text] [Related]
12. Raf kinase inhibitor protein (RKIP) deficiency decreases latency of tumorigenesis and increases metastasis in a murine genetic model of prostate cancer. Escara-Wilke J; Keller JM; Ignatoski KM; Dai J; Shelley G; Mizokami A; Zhang J; Yeung ML; Yeung KC; Keller ET Prostate; 2015 Feb; 75(3):292-302. PubMed ID: 25327941 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of 12/15-lipoxygenase, an ortholog of human 15-lipoxygenase-1, in the prostate tumors of TRAMP mice. Kelavkar UP; Glasgow W; Olson SJ; Foster BA; Shappell SB Neoplasia; 2004; 6(6):821-30. PubMed ID: 15720809 [TBL] [Abstract][Full Text] [Related]
14. TMEFF2 is an androgen-regulated gene exhibiting antiproliferative effects in prostate cancer cells. Gery S; Sawyers CL; Agus DB; Said JW; Koeffler HP Oncogene; 2002 Jul; 21(31):4739-46. PubMed ID: 12101412 [TBL] [Abstract][Full Text] [Related]
15. Genetic ablation of the amplified-in-breast cancer 1 inhibits spontaneous prostate cancer progression in mice. Chung AC; Zhou S; Liao L; Tien JC; Greenberg NM; Xu J Cancer Res; 2007 Jun; 67(12):5965-75. PubMed ID: 17575167 [TBL] [Abstract][Full Text] [Related]
16. Notch signaling dynamics in the adult healthy prostate and in prostatic tumor development. Pedrosa AR; Graça JL; Carvalho S; Peleteiro MC; Duarte A; Trindade A Prostate; 2016 Jan; 76(1):80-96. PubMed ID: 26419726 [TBL] [Abstract][Full Text] [Related]
17. Foxm1 expression in prostate epithelial cells is essential for prostate carcinogenesis. Cai Y; Balli D; Ustiyan V; Fulford L; Hiller A; Misetic V; Zhang Y; Paluch AM; Waltz SE; Kasper S; Kalin TV J Biol Chem; 2013 Aug; 288(31):22527-41. PubMed ID: 23775078 [TBL] [Abstract][Full Text] [Related]
18. Broadening of transgenic adenocarcinoma of the mouse prostate (TRAMP) model to represent late stage androgen depletion independent cancer. Jeet V; Ow K; Doherty E; Curley B; Russell PJ; Khatri A Prostate; 2008 Apr; 68(5):548-62. PubMed ID: 18247402 [TBL] [Abstract][Full Text] [Related]
19. Lobe-specific lineages of carcinogenesis in the transgenic adenocarcinoma of mouse prostate and their responses to chemopreventive selenium. Wang L; Zhang J; Zhang Y; Nkhata K; Quealy E; Liao JD; Cleary MP; Lü J Prostate; 2011 Sep; 71(13):1429-40. PubMed ID: 21360561 [TBL] [Abstract][Full Text] [Related]
20. TLR7 expression is decreased during tumour progression in transgenic adenocarcinoma of mouse prostate mice and its activation inhibits growth of prostate cancer cells. Han JH; Park SY; Kim JB; Cho SD; Kim B; Kim BY; Kang MJ; Kim DJ; Park JH; Park JH Am J Reprod Immunol; 2013 Oct; 70(4):317-26. PubMed ID: 23790156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]