These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 26417984)

  • 1. Mesh size analysis of cellulose nanofibril hydrogels using solute exclusion and PFG-NMR spectroscopy.
    Jowkarderis L; van de Ven TG
    Soft Matter; 2015 Dec; 11(47):9201-10. PubMed ID: 26417984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of pore size distribution using concentric double pulsed-field gradient NMR.
    Benjamini D; Nevo U
    J Magn Reson; 2013 May; 230():198-204. PubMed ID: 23548563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solute exclusion from cellulose in packed columns: process modeling and analysis.
    Neuman RP; Walker LP
    Biotechnol Bioeng; 1992 Jun; 40(2):226-34. PubMed ID: 18601108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proposed 2D framework for estimation of pore size distribution by double pulsed field gradient NMR.
    Benjamini D; Katz Y; Nevo U
    J Chem Phys; 2012 Dec; 137(22):224201. PubMed ID: 23248996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral and rotational mobility of some drug molecules in a poly(ethylene glycol) diacrylate hydrogel and the effect of drug-cyclodextrin complexation.
    Tomić K; Veeman WS; Boerakker M; Litvinov VM; Dias AA
    J Pharm Sci; 2008 Aug; 97(8):3245-56. PubMed ID: 18064700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical spectroscopy and relaxometry on alginate hydrogels: a comparative analysis for structural characterization and network mesh size determination.
    Turco G; Donati I; Grassi M; Marchioli G; Lapasin R; Paoletti S
    Biomacromolecules; 2011 Apr; 12(4):1272-82. PubMed ID: 21381704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solute Transport Dependence on 3D Geometry of Hydrogel Networks.
    Richbourg NR; Ravikumar A; Peppas NA
    Macromol Chem Phys; 2021 Aug; 222(16):. PubMed ID: 34456531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-diffusion and mutual diffusion of small molecules in high-set curdlan hydrogels studied by 31P NMR.
    Gagnon MA; Lafleur M
    J Phys Chem B; 2009 Jul; 113(27):9084-91. PubMed ID: 19522479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative characterization of pore structure of cellulose gels with or without bound protein ligand.
    Grznárová G; Yu S; Stefuca V; Polakovic M
    J Chromatogr A; 2005 Oct; 1092(1):107-13. PubMed ID: 16188565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore structural characterization of monolithic silica columns by inverse size-exclusion chromatography.
    Grimes BA; Skudas R; Unger KK; Lubda D
    J Chromatogr A; 2007 Mar; 1144(1):14-29. PubMed ID: 17126846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct correlation of diffusion and pore size distributions with low field NMR.
    Zhang Y; Xiao L; Liao G; Song YQ
    J Magn Reson; 2016 Aug; 269():196-202. PubMed ID: 27371788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion of water inside carbon nanotubes studied by pulsed field gradient NMR spectroscopy.
    Liu X; Pan X; Zhang S; Han X; Bao X
    Langmuir; 2014 Jul; 30(27):8036-45. PubMed ID: 24951088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput FRAP Analysis of Solute Diffusion in Hydrogels.
    Richbourg NR; Peppas NA
    Macromolecules; 2021 Nov; 54(22):10477-10486. PubMed ID: 35601759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of gelation mechanism and molecular interactions of agarose in solution by 1H NMR.
    Dai B; Matsukawa S
    Carbohydr Res; 2013 Jan; 365():38-45. PubMed ID: 23202536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of pulsed field gradient NMR with high gradient strength for studies of self-diffusion in lipid membranes on the nanoscale.
    Ulrich K; Sanders M; Grinberg F; Galvosas P; Vasenkov S
    Langmuir; 2008 Jul; 24(14):7365-70. PubMed ID: 18553990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the state and dynamics of water in hydrogels of cellulose ethers by 1H NMR spectroscopy.
    Baumgartner S; Lahajnar G; Sepe A; Kristl J
    AAPS PharmSciTech; 2002; 3(4):E36. PubMed ID: 12916930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of hydrogen bonding on diffusion and permeability in UV-cured Polyacrylate-based networks for controlled release.
    Wu B; Chassé W; Zick K; Mantle MD; Heise A; Brougham DF; Litvinov VM
    J Control Release; 2020 Nov; 327():150-160. PubMed ID: 32738286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining pore size distribution in wet cellulose by measuring solute exclusion using a differential refractometer.
    Lin JK; Ladisch MR; Patterson JA; Noller CH
    Biotechnol Bioeng; 1987 Jun; 29(8):976-81. PubMed ID: 18576547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic fabrication and permeation behaviors of uniform zwitterionic hydrogel microparticles and shells.
    Park J; Byun A; Kim DH; Shin SS; Kim JH; Kim JW
    J Colloid Interface Sci; 2014 Jul; 426():162-9. PubMed ID: 24863779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic method to measure small molecule diffusion in hydrogels.
    Evans SM; Litzenberger AL; Ellenberger AE; Maneval JE; Jablonski EL; Vogel BM
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():322-34. PubMed ID: 24411384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.