BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26418249)

  • 1. Predicting Anticancer Drug Responses Using a Dual-Layer Integrated Cell Line-Drug Network Model.
    Zhang N; Wang H; Fang Y; Wang J; Zheng X; Liu XS
    PLoS Comput Biol; 2015; 11(9):e1004498. PubMed ID: 26418249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting breast cancer drug response using a multiple-layer cell line drug response network model.
    Huang S; Hu P; Lakowski TM
    BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-Layer Strengthened Collaborative Topic Regression Modeling for Predicting Drug Sensitivity.
    Wang H; Xi J; Wang M; Li A
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):587-598. PubMed ID: 30106738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Improved Anticancer Drug-Response Prediction Based on an Ensemble Method Integrating Matrix Completion and Ridge Regression.
    Liu C; Wei D; Xiang J; Ren F; Huang L; Lang J; Tian G; Li Y; Yang J
    Mol Ther Nucleic Acids; 2020 Sep; 21():676-686. PubMed ID: 32759058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.
    Covell DG
    PLoS One; 2015; 10(7):e0127433. PubMed ID: 26132924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting drug response of tumors from integrated genomic profiles by deep neural networks.
    Chiu YC; Chen HH; Zhang T; Zhang S; Gorthi A; Wang LJ; Huang Y; Chen Y
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):18. PubMed ID: 30704458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A network flow-based method to predict anticancer drug sensitivity.
    Qin Y; Chen M; Wang H; Zheng X
    PLoS One; 2015; 10(5):e0127380. PubMed ID: 25992881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines.
    Li M; Wang Y; Zheng R; Shi X; Li Y; Wu FX; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):575-582. PubMed ID: 31150344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug Response Prediction by Globally Capturing Drug and Cell Line Information in a Heterogeneous Network.
    Le DH; Pham VH
    J Mol Biol; 2018 Sep; 430(18 Pt A):2993-3004. PubMed ID: 29966608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Integrated Approach to Anti-Cancer Drug Sensitivity Prediction.
    Berlow N; Haider S; Wan Q; Geltzeiler M; Davis LE; Keller C; Pal R
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):995-1008. PubMed ID: 26357038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predict drug sensitivity of cancer cells with pathway activity inference.
    Wang X; Sun Z; Zimmermann MT; Bugrim A; Kocher JP
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):15. PubMed ID: 30704449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive anticancer drug response prediction based on a simple cell line-drug complex network model.
    Wei D; Liu C; Zheng X; Li Y
    BMC Bioinformatics; 2019 Jan; 20(1):44. PubMed ID: 30670007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iterative sure independent ranking and screening for drug response prediction.
    An B; Zhang Q; Fang Y; Chen M; Qin Y
    BMC Med Inform Decis Mak; 2020 Sep; 20(Suppl 8):224. PubMed ID: 32962705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current Trends in Drug Sensitivity Prediction.
    Cortes-Ciriano I; Mervin LH; Bender A
    Curr Pharm Des; 2016; 22(46):6918-6927. PubMed ID: 27784247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection.
    Dong Z; Zhang N; Li C; Wang H; Fang Y; Wang J; Zheng X
    BMC Cancer; 2015 Jun; 15():489. PubMed ID: 26121976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug-induced cell viability prediction from LINCS-L1000 through WRFEN-XGBoost algorithm.
    Lu J; Chen M; Qin Y
    BMC Bioinformatics; 2021 Jan; 22(1):13. PubMed ID: 33407085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug Intervention Response Predictions with PARADIGM (DIRPP) identifies drug resistant cancer cell lines and pathway mechanisms of resistance.
    Brubaker D; Difeo A; Chen Y; Pearl T; Zhai K; Bebek G; Chance M; Barnholtz-Sloan J
    Pac Symp Biocomput; 2014; ():125-35. PubMed ID: 24297540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.
    Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y
    Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational identification of multi-omic correlates of anticancer therapeutic response.
    Stetson LC; Pearl T; Chen Y; Barnholtz-Sloan JS
    BMC Genomics; 2014; 15 Suppl 7(Suppl 7):S2. PubMed ID: 25573145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.