BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26418278)

  • 1. Understanding P450-mediated Bio-transformations into Epoxide and Phenolic Metabolites.
    Tomberg A; Pottel J; Liu Z; Labute P; Moitessier N
    Angew Chem Int Ed Engl; 2015 Nov; 54(46):13743-7. PubMed ID: 26418278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic studies on the drug metabolism and toxicity originating from cytochromes P450.
    Jaladanki CK; Gahlawat A; Rathod G; Sandhu H; Jahan K; Bharatam PV
    Drug Metab Rev; 2020 Aug; 52(3):366-394. PubMed ID: 32645272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pragmatic approach using first-principle methods to address site of metabolism with implications for reactive metabolite formation.
    Hsiao YW; Petersson C; Svensson MA; Norinder U
    J Chem Inf Model; 2012 Mar; 52(3):686-95. PubMed ID: 22299574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CypScore: Quantitative prediction of reactivity toward cytochromes P450 based on semiempirical molecular orbital theory.
    Hennemann M; Friedl A; Lobell M; Keldenich J; Hillisch A; Clark T; Göller AH
    ChemMedChem; 2009 Apr; 4(4):657-69. PubMed ID: 19243088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of metabolites of epoxidation reaction in MetaTox.
    Rudik AV; Dmitriev AV; Bezhentsev VM; Lagunin AA; Filimonov DA; Poroikov VV
    SAR QSAR Environ Res; 2017 Oct; 28(10):833-842. PubMed ID: 29157013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome P450/NADPH-dependent formation of trans epoxides from trans-arachidonic acids.
    Roy U; Loreau O; Balazy M
    Bioorg Med Chem Lett; 2004 Feb; 14(4):1019-22. PubMed ID: 15013014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism-based inactivation of cytochromes by furan epoxide: unraveling the molecular mechanism.
    Taxak N; Kalra S; Bharatam PV
    Inorg Chem; 2013 Dec; 52(23):13496-508. PubMed ID: 24236636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic-intermediate complex formation with cytochrome P450: theoretical studies in elucidating the reaction pathway for the generation of reactive nitroso intermediate.
    Taxak N; Desai PV; Patel B; Mohutsky M; Klimkowski VJ; Gombar V; Bharatam PV
    J Comput Chem; 2012 Aug; 33(21):1740-7. PubMed ID: 22610824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereochemical aspects of vinylcyclohexene bioactivation in rodent hepatic microsomes and purified human cytochrome P450 enzyme systems.
    Fontaine SM; Mash EA; Hoyer PB; Sipes IG
    Drug Metab Dispos; 2001 Feb; 29(2):179-84. PubMed ID: 11159809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-cytochrome P450-mediated bioactivation and its toxicological relevance.
    Gan J; Ma S; Zhang D
    Drug Metab Rev; 2016 Nov; 48(4):473-501. PubMed ID: 27533622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical rearrangement of phenol-epoxide metabolites of polycyclic aromatic hydrocarbons to quinone-methides.
    Hulbert PB; Grover PL
    Biochem Biophys Res Commun; 1983 Nov; 117(1):129-34. PubMed ID: 6661217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theory study on the formation of reactive benzoquinone imines by hydrogen abstraction.
    Leth R; Rydberg P; Jørgensen FS; Olsen L
    J Chem Inf Model; 2015 Mar; 55(3):660-6. PubMed ID: 25658971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Approach to Structural Alerts: Furans, Phenols, Nitroaromatics, and Thiophenes.
    Dang NL; Hughes TB; Miller GP; Swamidass SJ
    Chem Res Toxicol; 2017 Apr; 30(4):1046-1059. PubMed ID: 28256829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes.
    Shen S; Li L; Ding X; Zheng J
    Chem Res Toxicol; 2014 Jan; 27(1):27-33. PubMed ID: 24320693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome P450 oxidations in the generation of reactive electrophiles: epoxidation and related reactions.
    Guengerich FP
    Arch Biochem Biophys; 2003 Jan; 409(1):59-71. PubMed ID: 12464245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate specificity for the epoxidation of terpenoids and active site topology of house fly cytochrome P450 6A1.
    Andersen JF; Walding JK; Evans PH; Bowers WS; Feyereisen R
    Chem Res Toxicol; 1997 Feb; 10(2):156-64. PubMed ID: 9049426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between electrochemistry/mass spectrometry and cytochrome P450 catalyzed oxidation reactions.
    Jurva U; Wikström HV; Weidolf L; Bruins AP
    Rapid Commun Mass Spectrom; 2003; 17(8):800-10. PubMed ID: 12672134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Silico Prediction of Cytochrome P450-Mediated Biotransformations of Xenobiotics: A Case Study of Epoxidation.
    Zhang J; Ji L; Liu W
    Chem Res Toxicol; 2015 Aug; 28(8):1522-31. PubMed ID: 26200167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational explanation for bioactivation mechanism of targeted anticancer agents mediated by cytochrome P450s: A case of Erlotinib.
    Ai CZ; Liu Y; Li W; Chen DM; Zhu XX; Yan YW; Chen DC; Jiang YZ
    PLoS One; 2017; 12(6):e0179333. PubMed ID: 28628631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.