These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 26418344)
1. PbS Quantum-Dot Depleted Heterojunction Solar Cells Employing CdS Nanorod Arrays as the Electron Acceptor with Enhanced Efficiency. Yao X; Liu S; Chang Y; Li G; Mi L; Wang X; Jiang Y ACS Appl Mater Interfaces; 2015 Oct; 7(41):23117-23. PubMed ID: 26418344 [TBL] [Abstract][Full Text] [Related]
2. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays. Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional architecture hybrid perovskite solar cells using CdS nanorod arrays as an electron transport layer. Song Z; Tong G; Li H; Li G; Ma S; Yu S; Liu Q; Jiang Y Nanotechnology; 2018 Jan; 29(2):025401. PubMed ID: 29139395 [TBL] [Abstract][Full Text] [Related]
4. CdS and CdSe quantum dots subsectionally sensitized solar cells using a novel double-layer ZnO nanorod arrays. Deng J; Wang M; Song X; Shi Y; Zhang X J Colloid Interface Sci; 2012 Dec; 388(1):118-22. PubMed ID: 22964094 [TBL] [Abstract][Full Text] [Related]
5. Embedded vertically aligned cadmium telluride nanorod arrays grown by one-step electrodeposition for enhanced energy conversion efficiency in three-dimensional nanostructured solar cells. Wang J; Liu S; Mu Y; Liu L; A R; Yang J; Zhu G; Meng X; Fu W; Yang H J Colloid Interface Sci; 2017 Nov; 505():1047-1054. PubMed ID: 28697544 [TBL] [Abstract][Full Text] [Related]
6. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots. Lai LH; Protesescu L; Kovalenko MV; Loi MA Phys Chem Chem Phys; 2014 Jan; 16(2):736-42. PubMed ID: 24270835 [TBL] [Abstract][Full Text] [Related]
7. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells. Tan F; Wang Z; Qu S; Cao D; Liu K; Jiang Q; Yang Y; Pang S; Zhang W; Lei Y; Wang Z Nanoscale; 2016 May; 8(19):10198-204. PubMed ID: 27124650 [TBL] [Abstract][Full Text] [Related]
8. Direct Low-Temperature Growth of Single-Crystalline Anatase TiO2 Nanorod Arrays on Transparent Conducting Oxide Substrates for Use in PbS Quantum-Dot Solar Cells. Chung HS; Han GS; Park SY; Shin HW; Ahn TK; Jeong S; Cho IS; Jung HS ACS Appl Mater Interfaces; 2015 May; 7(19):10324-30. PubMed ID: 25928587 [TBL] [Abstract][Full Text] [Related]
9. Chemically grown vertically aligned 1D ZnO nanorods with CdS coating for efficient quantum dot sensitized solar cells (QDSSC): a controlled synthesis route. Mali SS; Kim H; Patil PS; Hong CK Dalton Trans; 2013 Dec; 42(48):16961-7. PubMed ID: 24097343 [TBL] [Abstract][Full Text] [Related]
10. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Wu K; Zhu H; Lian T Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713 [TBL] [Abstract][Full Text] [Related]
11. Heterojunction Photoanode of Atomic-Layer-Deposited MoS Ho TA; Bae C; Joe J; Yang H; Kim S; Park JH; Shin H ACS Appl Mater Interfaces; 2019 Oct; 11(41):37586-37594. PubMed ID: 31580636 [TBL] [Abstract][Full Text] [Related]
12. Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Li Y; Wei L; Chen X; Zhang R; Sui X; Chen Y; Jiao J; Mei L Nanoscale Res Lett; 2013 Feb; 8(1):67. PubMed ID: 23394609 [TBL] [Abstract][Full Text] [Related]
13. Superstrate CuInS2 photovoltaics with enhanced performance using a CdS/ZnO nanorod array. Lee D; Yong K ACS Appl Mater Interfaces; 2012 Dec; 4(12):6758-65. PubMed ID: 23163478 [TBL] [Abstract][Full Text] [Related]
14. High-Efficiency Double Absorber PbS/CdS Heterojunction Solar Cells by Enhanced Charge Collection Using a ZnO Nanorod Array. Yeon DH; Mohanty BC; Lee CY; Lee SM; Cho YS ACS Omega; 2017 Aug; 2(8):4894-4899. PubMed ID: 31457768 [TBL] [Abstract][Full Text] [Related]
15. Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells. Huang H; Pan L; Lim CK; Gong H; Guo J; Tse MS; Tan OK Small; 2013 Sep; 9(18):3153-60. PubMed ID: 23606243 [TBL] [Abstract][Full Text] [Related]
16. A layer-by-layer ZnO nanoparticle-PbS quantum dot self-assembly platform for ultrafast interfacial electron injection. Eita M; Usman A; El-Ballouli AO; Alarousu E; Bakr OM; Mohammed OF Small; 2015 Jan; 11(1):112-8. PubMed ID: 25163799 [TBL] [Abstract][Full Text] [Related]
17. CdSe-CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photo-electrical conversion efficiency. Yuan Z; Yin L Nanoscale; 2014 Nov; 6(21):13135-44. PubMed ID: 25251160 [TBL] [Abstract][Full Text] [Related]
18. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers. Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833 [TBL] [Abstract][Full Text] [Related]
19. Low-temperature solution-processed solar cells based on PbS colloidal quantum dot/CdS heterojunctions. Chang LY; Lunt RR; Brown PR; Bulović V; Bawendi MG Nano Lett; 2013 Mar; 13(3):994-9. PubMed ID: 23406331 [TBL] [Abstract][Full Text] [Related]
20. Heterojunction Area-Controlled Inorganic Nanocrystal Solar Cells Fabricated Using Supra-Quantum Dots. Park J; Hwang S; Jeong S; Kim S; Bang J; Cho S ACS Appl Mater Interfaces; 2018 Dec; 10(50):43768-43773. PubMed ID: 30411612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]