These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 26418366)
1. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy. Grevillot L; Stock M; Vatnitsky S Phys Med Biol; 2015 Oct; 60(20):7985-8005. PubMed ID: 26418366 [TBL] [Abstract][Full Text] [Related]
2. A GATE/Geant4 beam model for the MedAustron non-isocentric proton treatment plans quality assurance. Elia A; Resch AF; Carlino A; Böhlen TT; Fuchs H; Palmans H; Letellier V; Dreindl R; Osorio J; Stock M; Sarrut D; Grevillot L Phys Med; 2020 Mar; 71():115-123. PubMed ID: 32126519 [TBL] [Abstract][Full Text] [Related]
3. Validation of new 2D ripple filters in proton treatments of spherical geometries and non-small cell lung carcinoma cases. Ringbæk TP; Weber U; Santiago A; Iancu G; Wittig A; Grzanka L; Bassler N; Engenhart-Cabillic R; Zink K Phys Med Biol; 2018 Dec; 63(24):245020. PubMed ID: 30523868 [TBL] [Abstract][Full Text] [Related]
4. Improvement of spread-out Bragg peak flatness for a carbon-ion beam by the use of a ridge filter with a ripple filter. Hara Y; Takada Y; Hotta K; Tansho R; Nihei T; Suzuki Y; Nagafuchi K; Kawai R; Tanabe M; Mizutani S; Himukai T; Matsufuji N Phys Med Biol; 2012 Mar; 57(6):1717-31. PubMed ID: 22398392 [TBL] [Abstract][Full Text] [Related]
5. Modulation power of porous materials and usage as ripple filter in particle therapy. Printz Ringbæk T; Simeonov Y; Witt M; Engenhart-Cabillic R; Kraft G; Zink K; Weber U Phys Med Biol; 2017 Apr; 62(7):2892-2909. PubMed ID: 28140381 [TBL] [Abstract][Full Text] [Related]
6. Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields. Padilla-Cabal F; Alejandro Fragoso J; Franz Resch A; Georg D; Fuchs H Med Phys; 2020 Jan; 47(1):223-233. PubMed ID: 31661559 [TBL] [Abstract][Full Text] [Related]
7. Design and commissioning of the non-dedicated scanning proton beamline for ocular treatment at the synchrotron-based CNAO facility. Ciocca M; Magro G; Mastella E; Mairani A; Mirandola A; Molinelli S; Russo S; Vai A; Fiore MR; Mosci C; Valvo F; Via R; Baroni G; Orecchia R Med Phys; 2019 Apr; 46(4):1852-1862. PubMed ID: 30659616 [TBL] [Abstract][Full Text] [Related]
8. Commissioning of pencil beam and Monte Carlo dose engines for non-isocentric treatments in scanned proton beam therapy. Carlino A; Böhlen T; Vatnitsky S; Grevillot L; Osorio J; Dreindl R; Palmans H; Stock M; Kragl G Phys Med Biol; 2019 Aug; 64(17):17NT01. PubMed ID: 31342920 [TBL] [Abstract][Full Text] [Related]
9. Helium ions at the heidelberg ion beam therapy center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements. Tessonnier T; Mairani A; Brons S; Sala P; Cerutti F; Ferrari A; Haberer T; Debus J; Parodi K Phys Med Biol; 2017 Aug; 62(16):6784-6803. PubMed ID: 28762335 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo simulations of new 2D ripple filters for particle therapy facilities. Ringbæk TP; Weber U; Petersen JB; Thomsen B; Bassler N Acta Oncol; 2014 Jan; 53(1):40-9. PubMed ID: 24050575 [TBL] [Abstract][Full Text] [Related]
11. Fluence inhomogeneities due to a ripple filter induced Moiré effect. Ringbæk TP; Brons S; Naumann J; Ackermann B; Horn J; Latzel H; Scheloske S; Galonska M; Bassler N; Zink K; Weber U Phys Med Biol; 2015 Feb; 60(3):N59-69. PubMed ID: 25590354 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of hybrid depth scanning for carbon-ion radiotherapy. Inaniwa T; Furukawa T; Kanematsu N; Mori S; Mizushima K; Sato S; Toshito T; Shirai T; Noda K Med Phys; 2012 May; 39(5):2820-5. PubMed ID: 22559653 [TBL] [Abstract][Full Text] [Related]
13. A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4. Grevillot L; Bertrand D; Dessy F; Freud N; Sarrut D Phys Med Biol; 2011 Aug; 56(16):5203-19. PubMed ID: 21791731 [TBL] [Abstract][Full Text] [Related]
14. Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations. Saini J; Maes D; Egan A; Bowen SR; St James S; Janson M; Wong T; Bloch C Phys Med Biol; 2017 Sep; 62(19):7659-7681. PubMed ID: 28749373 [TBL] [Abstract][Full Text] [Related]
15. Initial beam size study for passive scatter proton therapy. II. Changes in delivered depth dose profiles. Polf JC; Harvey MC; Smith AR Med Phys; 2007 Nov; 34(11):4219-22. PubMed ID: 18072486 [TBL] [Abstract][Full Text] [Related]
16. Optimization of FLASH proton beams using a track-repeating algorithm. Wang Q; Titt U; Mohan R; Guan F; Zhao Y; Yang M; Yepes P Med Phys; 2022 Oct; 49(10):6684-6698. PubMed ID: 35900902 [TBL] [Abstract][Full Text] [Related]
17. Quality assurance method for monitoring of lateral pencil beam positions in scanned carbon-ion radiotherapy using tracking of secondary ions. Félix-Bautista R; Ghesquière-Diérickx L; Marek L; Granja C; Soukup P; Turecek D; Kelleter L; Brons S; Ellerbrock M; Jäkel O; Gehrke T; Martišíková M Med Phys; 2021 Aug; 48(8):4411-4424. PubMed ID: 34061994 [TBL] [Abstract][Full Text] [Related]
18. Measurements of lateral penumbra for uniform scanning proton beams under various beam delivery conditions and comparison to the XiO treatment planning system. Rana S; Zeidan O; Ramirez E; Rains M; Gao J; Zheng Y Med Phys; 2013 Sep; 40(9):091708. PubMed ID: 24007141 [TBL] [Abstract][Full Text] [Related]
19. Effective generation of the spread-out-Bragg peak from the laser accelerated proton beams using a carbon-proton mixed target. Yoo SH; Cho I; Cho S; Song Y; Jung WG; Kim DH; Shin D; Lee SB; Pae KH; Park SY Australas Phys Eng Sci Med; 2014 Dec; 37(4):635-44. PubMed ID: 25154880 [TBL] [Abstract][Full Text] [Related]
20. A pencil beam algorithm for magnetic resonance image-guided proton therapy. Padilla-Cabal F; Georg D; Fuchs H Med Phys; 2018 May; 45(5):2195-2204. PubMed ID: 29532490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]