BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 26418440)

  • 1. Injectable and Self-Healing Dynamic Hydrogels Based on Metal(I)-Thiolate/Disulfide Exchange as Biomaterials with Tunable Mechanical Properties.
    Casuso P; Odriozola I; Pérez-San Vicente A; Loinaz I; Cabañero G; Grande HJ; Dupin D
    Biomacromolecules; 2015 Nov; 16(11):3552-61. PubMed ID: 26418440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Healing Dynamic Hydrogel as Injectable Shock-Absorbing Artificial Nucleus Pulposus.
    Pérez-San Vicente A; Peroglio M; Ernst M; Casuso P; Loinaz I; Grande HJ; Alini M; Eglin D; Dupin D
    Biomacromolecules; 2017 Aug; 18(8):2360-2370. PubMed ID: 28679056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of polymer-hydrogel capsules via thiol-disulfide exchange.
    Chong SF; Chandrawati R; Städler B; Park J; Cho J; Wang Y; Jia Z; Bulmus V; Davis TP; Zelikin AN; Caruso F
    Small; 2009 Nov; 5(22):2601-10. PubMed ID: 19771568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of dynamic covalently crosslinking keratin hydrogels based on thiol/disulfide bonds exchange strategy.
    Chen M; Ren X; Dong L; Li X; Cheng H
    Int J Biol Macromol; 2021 Jul; 182():1259-1267. PubMed ID: 33991559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible light triggered controlled formation of rapidly self-healing hydrogels based on thiol-disulfide exchange.
    Wang L; Cao Q; Wang X; Wu D
    Soft Matter; 2022 Apr; 18(15):3004-3012. PubMed ID: 35355026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 'Living' controlled in situ gelling systems: thiol-disulfide exchange method toward tailor-made biodegradable hydrogels.
    Wu DC; Loh XJ; Wu YL; Lay CL; Liu Y
    J Am Chem Soc; 2010 Nov; 132(43):15140-3. PubMed ID: 20929223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-Responsive Hydrogels for Tunable and "On-Demand" Release of Biomacromolecules.
    Kilic Boz R; Aydin D; Kocak S; Golba B; Sanyal R; Sanyal A
    Bioconjug Chem; 2022 May; 33(5):839-847. PubMed ID: 35446015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating Thiol p K
    Bermejo-Velasco D; Azémar A; Oommen OP; Hilborn J; Varghese OP
    Biomacromolecules; 2019 Mar; 20(3):1412-1420. PubMed ID: 30726668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering.
    Cao Y; Yao Y; Li Y; Yang X; Cao Z; Yang G
    J Colloid Interface Sci; 2019 May; 544():121-129. PubMed ID: 30826530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile engineering of ECM-mimetic injectable dual crosslinking hydrogels with excellent mechanical resilience, tissue adhesion, and biocompatibility.
    Fu H; Yu C; Li X; Bao H; Zhang B; Chen Z; Zhang Z
    J Mater Chem B; 2021 Dec; 9(48):10003-10014. PubMed ID: 34874044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast-Forming Dissolvable Redox-Responsive Hydrogels: Exploiting the Orthogonality of Thiol-Maleimide and Thiol-Disulfide Exchange Chemistry.
    Altinbasak I; Kocak S; Sanyal R; Sanyal A
    Biomacromolecules; 2022 Sep; 23(9):3525-3534. PubMed ID: 35696518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technique of surface modification of a cell-adhesion-resistant hydrogel by a cell-adhesion-available inorganic microarray.
    Sun J; Graeter SV; Yu L; Duan S; Spatz JP; Ding J
    Biomacromolecules; 2008 Oct; 9(10):2569-72. PubMed ID: 18646821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid self-healable poly(ethylene glycol) hydrogels formed by selective metal-phosphate interactions.
    Sato T; Ebara M; Tanaka S; Asoh TA; Kikuchi A; Aoyagi T
    Phys Chem Chem Phys; 2013 Jul; 15(26):10628-35. PubMed ID: 23552828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Fabrication of a Modular "Catch and Release" Hydrogel Interface: Harnessing Thiol-Disulfide Exchange for Reversible Protein Capture and Cell Attachment.
    Gevrek TN; Cosar M; Aydin D; Kaga E; Arslan M; Sanyal R; Sanyal A
    ACS Appl Mater Interfaces; 2018 May; 10(17):14399-14409. PubMed ID: 29637775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable and fast self-healing protein hydrogels.
    Zhang X; Jiang S; Yan T; Fan X; Li F; Yang X; Ren B; Xu J; Liu J
    Soft Matter; 2019 Oct; 15(38):7583-7589. PubMed ID: 31465079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Injectable Self-Healing Protein Hydrogel with Multiple Dissipation Modes and Tunable Dynamic Response.
    Sun W; Duan T; Cao Y; Li H
    Biomacromolecules; 2019 Nov; 20(11):4199-4207. PubMed ID: 31553595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and Characterization of Injectable Sulfonate-Containing Hydrogels.
    Liang J; Karakoçak BB; Struckhoff JJ; Ravi N
    Biomacromolecules; 2016 Dec; 17(12):4064-4074. PubMed ID: 27936721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of hybrid hydrogels consisting of tripeptide and different silver nanoparticle-capped ligands: modulation of the mechanical strength of gel phase materials.
    Nanda J; Adhikari B; Basak S; Banerjee A
    J Phys Chem B; 2012 Oct; 116(40):12235-44. PubMed ID: 22962848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injectable Self-Healing Glucose-Responsive Hydrogels with pH-Regulated Mechanical Properties.
    Yesilyurt V; Webber MJ; Appel EA; Godwin C; Langer R; Anderson DG
    Adv Mater; 2016 Jan; 28(1):86-91. PubMed ID: 26540021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose-responsive hydrogels based on dynamic covalent chemistry and inclusion complexation.
    Yang T; Ji R; Deng XX; Du FS; Li ZC
    Soft Matter; 2014 Apr; 10(15):2671-8. PubMed ID: 24647364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.