BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 2641883)

  • 1. Calcium uptake-dependent and -independent mechanisms of inositol trisphosphate formation in adrenal chromaffin cells: comparative studies with high K+, carbamylcholine and angiotensin II.
    Sasakawa N; Nakaki T; Yamamoto S; Kato R
    Cell Signal; 1989; 1(1):75-84. PubMed ID: 2641883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulus-responsive and rapid formation of inositol pentakisphosphate in cultured adrenal chromaffin cells.
    Sasakawa N; Nakaki T; Kato R
    J Biol Chem; 1990 Oct; 265(29):17700-5. PubMed ID: 2120216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inositol trisphosphate accumulation by high K+ stimulation in cultured adrenal chromaffin cells.
    Sasakawa N; Nakaki T; Yamamoto S; Kato R
    FEBS Lett; 1987 Nov; 223(2):413-6. PubMed ID: 3499352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of inositol polyphosphate metabolism in cultured adrenal chromaffin cells.
    Sasakawa N; Nakaki T; Kato R
    Prog Neuropsychopharmacol Biol Psychiatry; 1993 Sep; 17(5):825-34. PubMed ID: 8255989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation by ATP of inositol trisphosphate accumulation and calcium mobilization in cultured adrenal chromaffin cells.
    Sasakawa N; Nakaki T; Yamamoto S; Kato R
    J Neurochem; 1989 Feb; 52(2):441-7. PubMed ID: 2783453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of protein kinase C activators on carbamylcholine- and high K+-induced rises in intracellular free calcium concentration in cultured adrenal chromaffin cells.
    Sasakawa N; Ishii K; Yamamoto S; Kato R
    Biochem Biophys Res Commun; 1986 Sep; 139(3):903-9. PubMed ID: 3768006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of W-7 on catecholamine release and 45Ca2+ uptake in cultured adrenal chromaffin cells.
    Sasakawa N; Kumakura K; Yamamoto S; Kato R
    Life Sci; 1983 Nov; 33(20):2017-24. PubMed ID: 6417429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diabetic rat glomerular mesangial cells display normal inositol trisphosphate and calcium release.
    Hurst RD; Whiteside CI; Thompson JC
    Am J Physiol; 1992 Oct; 263(4 Pt 2):F649-55. PubMed ID: 1415736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane potential regulates Ca2+ uptake and inositol phosphate generation in rat sublingual mucous acini.
    Zhang GH; Melvin JE
    Cell Calcium; 1993 Jul; 14(7):551-62. PubMed ID: 7691410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinergic stimulation of inositol phosphate formation in bovine adrenal chromaffin cells: distinct nicotinic and muscarinic mechanisms.
    Eberhard DA; Holz RW
    J Neurochem; 1987 Nov; 49(5):1634-43. PubMed ID: 3668543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociation of Ca2+ entry and Ca2+ mobilization responses to angiotensin II in bovine adrenal chromaffin cells.
    Stauderman KA; Pruss RM
    J Biol Chem; 1989 Nov; 264(31):18349-55. PubMed ID: 2509455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of inositol 1,4,5-trisphosphate-induced Ca2+ release in permeabilized pancreatic acinar cells by hormonal and phorbol ester pretreatment.
    Willems PH; Van den Broek BA; Van Os CH; De Pont JJ
    J Biol Chem; 1989 Jun; 264(17):9762-7. PubMed ID: 2785996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase in inositol tris-, pentakis- and hexakisphosphates by high K+ stimulation in cultured rat cerebellar granule cells.
    Sasakawa N; Nakaki T; Kakinuma E; Kato R
    Brain Res; 1993 Sep; 623(1):155-60. PubMed ID: 8221084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscarinic-agonist and guanine nucleotide stimulation of myo-inositol trisphosphate formation in membranes isolated from bovine iris sphincter smooth muscle: effects of short-term cholinergic desensitization.
    Honkanen RE; Abdel-Latif AA
    Membr Biochem; 1989; 8(1):39-59. PubMed ID: 2554097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of muscarinic receptor-induced inositol phospholipid hydrolysis by caffeine, beta-adrenoceptors and protein kinase C in intestinal smooth muscle.
    Prestwich SA; Bolton TB
    Br J Pharmacol; 1995 Feb; 114(3):602-11. PubMed ID: 7537591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid increase in inositol pentakisphosphate accumulation by nicotine in cultured adrenal chromaffin cells.
    Sasakawa N; Nakaki T; Kato R
    FEBS Lett; 1990 Feb; 261(2):378-80. PubMed ID: 2311765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin-receptor signaling in cultured vascular smooth muscle cells.
    Smith JB
    Am J Physiol; 1986 May; 250(5 Pt 2):F759-69. PubMed ID: 2422956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlative studies on the effect of carbachol on myo-inositol trisphosphate accumulation, myosin light chain phosphorylation and contraction in sphincter smooth muscle of rabbit iris.
    Howe PH; Akhtar RA; Naderi S; Abdel-Latif AA
    J Pharmacol Exp Ther; 1986 Nov; 239(2):574-83. PubMed ID: 3021957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate-stimulated production of inositol phosphates is mediated by Ca2+ influx in oligodendrocyte progenitors.
    Liu HN; Molina-Holgado E; Almazan G
    Eur J Pharmacol; 1997 Nov; 338(3):277-87. PubMed ID: 9424022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium efflux from cultured bovine adrenal chromaffin cells induced by pituitary adenylate cyclase-activating polypeptide (PACAP): possible involvement of an Na+/Ca2+ exchange mechanism.
    Houchi H; Okuno M; Kitamura K; Minakuchi K; Ishimura Y; Ohuchi T; Oka M
    Life Sci; 1995; 56(21):1825-34. PubMed ID: 7537845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.