These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26418853)

  • 1. A phylogenetic approach to the early evolution of autotrophy: the case of the reverse TCA and the reductive acetyl-CoA pathways.
    Becerra A; Rivas M; García-Ferris C; Lazcano A; Peretó J
    Int Microbiol; 2014 Jun; 17(2):91-7. PubMed ID: 26418853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage.
    Hügler M; Huber H; Molyneaux SJ; Vetriani C; Sievert SM
    Environ Microbiol; 2007 Jan; 9(1):81-92. PubMed ID: 17227414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Both forward and reverse TCA cycles operate in green sulfur bacteria.
    Tang KH; Blankenship RE
    J Biol Chem; 2010 Nov; 285(46):35848-54. PubMed ID: 20650900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High CO
    Steffens L; Pettinato E; Steiner TM; Mall A; König S; Eisenreich W; Berg IA
    Nature; 2021 Apr; 592(7856):784-788. PubMed ID: 33883741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the epsilon subdivision of proteobacteria.
    Hügler M; Wirsen CO; Fuchs G; Taylor CD; Sievert SM
    J Bacteriol; 2005 May; 187(9):3020-7. PubMed ID: 15838028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron catalysis at the origin of life.
    Camprubi E; Jordan SF; Vasiliadou R; Lane N
    IUBMB Life; 2017 Jun; 69(6):373-381. PubMed ID: 28470848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem.
    Takami H; Noguchi H; Takaki Y; Uchiyama I; Toyoda A; Nishi S; Chee GJ; Arai W; Nunoura T; Itoh T; Hattori M; Takai K
    PLoS One; 2012; 7(1):e30559. PubMed ID: 22303444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early evolution of the biotin-dependent carboxylase family.
    Lombard J; Moreira D
    BMC Evol Biol; 2011 Aug; 11():232. PubMed ID: 21827699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes.
    Adam PS; Borrel G; Gribaldo S
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):E1166-E1173. PubMed ID: 29358391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel enzyme reactions related to the tricarboxylic acid cycle: phylogenetic/functional implications and biotechnological applications.
    Aoshima M
    Appl Microbiol Biotechnol; 2007 May; 75(2):249-55. PubMed ID: 17333169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic flux analysis of the mixotrophic metabolisms in the green sulfur bacterium Chlorobaculum tepidum.
    Feng X; Tang KH; Blankenship RE; Tang YJ
    J Biol Chem; 2010 Dec; 285(50):39544-50. PubMed ID: 20937805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic and electron paramagnetic resonance studies of anabolic pyruvate synthesis by pyruvate: ferredoxin oxidoreductase from Hydrogenobacter thermophilus.
    Ikeda T; Yamamoto M; Arai H; Ohmori D; Ishii M; Igarashi Y
    FEBS J; 2010 Jan; 277(2):501-10. PubMed ID: 20015072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative biochemistry of CO2 fixation and the evolution of autotrophy.
    Peretó JG; Velasco AM; Becerra A; Lazcano A
    Int Microbiol; 1999 Mar; 2(1):3-10. PubMed ID: 10943384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium.
    Mall A; Sobotta J; Huber C; Tschirner C; Kowarschik S; Bačnik K; Mergelsberg M; Boll M; Hügler M; Eisenreich W; Berg IA
    Science; 2018 Feb; 359(6375):563-567. PubMed ID: 29420287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the autotrophic CO2 fixation pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism.
    Jahn U; Huber H; Eisenreich W; Hügler M; Fuchs G
    J Bacteriol; 2007 Jun; 189(11):4108-19. PubMed ID: 17400748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?
    Fuchs G
    Annu Rev Microbiol; 2011; 65():631-58. PubMed ID: 21740227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formate-Dependent Acetogenic Utilization of Glucose by the Fecal Acetogen
    Yao Y; Fu B; Han D; Zhang Y; Liu H
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32948524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autotrophic CO2 fixation pathways in archaea (Crenarchaeota).
    Hügler M; Huber H; Stetter KO; Fuchs G
    Arch Microbiol; 2003 Mar; 179(3):160-73. PubMed ID: 12610721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The physiology and habitat of the last universal common ancestor.
    Weiss MC; Sousa FL; Mrnjavac N; Neukirchen S; Roettger M; Nelson-Sathi S; Martin WF
    Nat Microbiol; 2016 Jul; 1(9):16116. PubMed ID: 27562259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway.
    Furdui C; Ragsdale SW
    J Biol Chem; 2000 Sep; 275(37):28494-9. PubMed ID: 10878009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.