BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26419245)

  • 1. Biological toxicity of cellulose nanocrystals (CNCs) against the luxCDABE-based bioluminescent bioreporter Escherichia coli 652T7.
    Du L; Arnholt K; Ripp S; Sayler G; Wang S; Liang C; Wang J; Zhuang J
    Ecotoxicology; 2015 Dec; 24(10):2049-53. PubMed ID: 26419245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Attacking-Attacking" Anti-biofouling Strategy Enabled by Cellulose Nanocrystals-Silver Materials.
    Noronha VT; Jackson JC; Camargos CHM; Paula AJ; Rezende CA; Faria AF
    ACS Appl Bio Mater; 2022 Mar; 5(3):1025-1037. PubMed ID: 35176855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of lipid type and toxicological properties on the digestion of cellulose nanocrystals in simulated gastrointestinal tract.
    Ma T; Lu S; Hu X; Song Y; Hu X
    Food Chem; 2022 Dec; 396():133653. PubMed ID: 35830836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomass-derived cellulose nanoparticles display considerable neurotoxicity in zebrafish.
    Liu C; Zhao J; Zhang X; Wei G; Hao W; Wang X; Yang C; Shi Y; Liu D
    Int J Biol Macromol; 2020 Dec; 165(Pt B):1783-1792. PubMed ID: 33045296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles.
    Endes C; Schmid O; Kinnear C; Mueller S; Camarero-Espinosa S; Vanhecke D; Foster EJ; Petri-Fink A; Rothen-Rutishauser B; Weder C; Clift MJ
    Part Fibre Toxicol; 2014 Sep; 11():40. PubMed ID: 25245637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.
    Kan KH; Li J; Wijesekera K; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3130-9. PubMed ID: 23865631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noncovalent Dispersion and Functionalization of Cellulose Nanocrystals with Proteins and Polysaccharides.
    Fang W; Arola S; Malho JM; Kontturi E; Linder MB; Laaksonen P
    Biomacromolecules; 2016 Apr; 17(4):1458-65. PubMed ID: 26907991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individually Dispersed Wood-Based Cellulose Nanocrystals.
    Chang H; Luo J; Bakhtiary Davijani AA; Chien AT; Wang PH; Liu HC; Kumar S
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5768-71. PubMed ID: 26901421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic force microscopy characterization of cellulose nanocrystals.
    Lahiji RR; Xu X; Reifenberger R; Raman A; Rudie A; Moon RJ
    Langmuir; 2010 Mar; 26(6):4480-8. PubMed ID: 20055370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals.
    Guo J; Guo X; Wang S; Yin Y
    Carbohydr Polym; 2016 Jan; 135():248-55. PubMed ID: 26453875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The preparation and characterization of nanocomposite film reinforced by modified cellulose nanocrystals.
    Chen QJ; Zhou LL; Zou JQ; Gao X
    Int J Biol Macromol; 2019 Jul; 132():1155-1162. PubMed ID: 30981769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study on the preparation and characterization of cellulose nanocrystals with various polymorphs.
    Gong J; Mo L; Li J
    Carbohydr Polym; 2018 Sep; 195():18-28. PubMed ID: 29804966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial availability of mercury: effective detection and organic ligand effect using a whole-cell bioluminescent bioreporter.
    Xu X; Oliff K; Xu T; Ripp S; Sayler G; Zhuang J
    Ecotoxicology; 2015 Dec; 24(10):2200-6. PubMed ID: 26419244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications.
    Fox DM; Rodriguez RS; Devilbiss MN; Woodcock J; Davis CS; Sinko R; Keten S; Gilman JW
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27270-27281. PubMed ID: 27626824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of in vitro cytotoxicity and properties of polydimethylsiloxane-based polyurethane/crystalline nanocellulose bionanocomposites.
    Khadivi P; Salami-Kalajahi M; Roghani-Mamaqani H
    J Biomed Mater Res A; 2019 Aug; 107(8):1771-1778. PubMed ID: 30983129
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Weiss AM; Macke N; Zhang Y; Calvino C; Esser-Kahn AP; Rowan SJ
    ACS Biomater Sci Eng; 2021 Apr; 7(4):1450-1461. PubMed ID: 33689287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents.
    Abitbol T; Palermo A; Moran-Mirabal JM; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3278-84. PubMed ID: 23952644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphonate-Modified Cellulose Nanocrystals Potentiate the Th1 Polarising Capacity of Monocyte-Derived Dendritic Cells via GABA-B Receptor.
    Bekić M; Vasiljević M; Stojanović D; Kokol V; Mihajlović D; Vučević D; Uskoković P; Čolić M; Tomić S
    Int J Nanomedicine; 2022; 17():3191-3216. PubMed ID: 35909813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of cellulose nanocrystals carrying tyrosine sulfate mimetic ligands and inhibition of alphavirus infection.
    Zoppe JO; Ruottinen V; Ruotsalainen J; Rönkkö S; Johansson LS; Hinkkanen A; Järvinen K; Seppälä J
    Biomacromolecules; 2014 Apr; 15(4):1534-42. PubMed ID: 24628489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarking Cellulose Nanocrystals Part II: New Industrially Produced Materials.
    Delepierre G; Vanderfleet OM; Niinivaara E; Zakani B; Cranston ED
    Langmuir; 2021 Jul; 37(28):8393-8409. PubMed ID: 34250804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.